[1] G.N. Tiwari, A.K. Tiwari, Solar Distillation Practice for Water Desalination Systems, Anamaya, New Delhi, India, 2008. ISBN: 8188342718.
[2] A.E. Kabeel, S.A. El-Agouz, Review of researches and developments on solar stills, Desalination 276 (2011) 1–12. https://doi.org/10.1016/j.desal.2011.03.042.
[3] G.M. Ayoub, L. Malaeb, Developments in solar still desalination systems: A critical review, Crit. Rev. Environ. Sci. Technol. 42 (2012) 2078–2112. https://doi.org/10.1080/10643389.2011.574104.
[4] P. Prakash, V. Velmurugan, Parameters influencing the productivity of solar stills – A review, Renew. Sustain. Energy Rev. 49 (2015) 585–609. https://doi.org/10.1016/j.rser.2015.04.136.
[5] H. Panchal, I. Mohan, Various methods applied to solar still for enhancement of distillate output, Desalination 415 (2017) 76–89. https://doi.org/10.1016/J.DESAL.2017.04.015.
[6] H. Panchal, N. Patel, H. Thakkar, Various techniques for improvement in distillate output from active solar still: a review, Int. J. Ambient Energy 38 (2017) 209–222. https://doi.org/10.1080/01430750.2015.1076518.
[7] D. Mevada, H. Panchal, K. kumar Sadasivuni, M. Israr, M. Suresh, S. Dharaskar, H. Thakkar, Effect of fin configuration parameters on performance of solar still: A review, Groundw. Sustain. Dev. 10 (2020) 100289. https://doi.org/10.1016/j.gsd.2019.100289.
[8] H. Panchal, K. Patel, M. Elkelawy, H.A.-E. Bastawissi, A use of various phase change materials on the performance of solar still: a review, Int. J. Ambient Energy 0 (2019) 1–6. https://doi.org/10.1080/01430750.2019.1594376.
[9] A.K. Tiwari, G.N. Tiwari, Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination 195 (2006) 78–94. https://doi.org/10.1016/j.desal.2005.11.014.
[10] B. Jamil, N. Akhtar, Effect of specific height on the performance of a single slope solar still: An experimental study, Desalination 414 (2017) 73–88. https://doi.org/10.1016/j.desal.2017.03.036.
[11] M. Afrand, A. Karimipour, Theoretical analysis of various climatic parameter effects on performance of a basin solar still, J. Power Technol. 97 (2017) 44–51. https://api.semanticscholar.org/CorpusID:55109734.
[12] P. Dumka, D.R. Mishra, Influence of salt concentration on the performance characteristics of passive solar still, Int. J. Ambient Energy (2019) 1–11. https://doi.org/10.1080/01430750.2019.1611638.
[13] P. Dumka, D.R. Mishra, Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: Study of heat and mass transfer, Desalination 437 (2018) 15–25. https://doi.org/10.1016/j.desal.2018.02.026.
[14] P. Dumka, D.R. Mishra, Experimental investigation of modified single slope solar still integrated with earth (I) {\&} (II):Energy and exergy analysis, Energy 160 (2018) 1144–1157. https://doi.org/10.1016/J.ENERGY.2018.07.083.
[15] T. Arunkumar, A.E. Kabeel, K. Raj, D. Denkenberger, R. Sathyamurthy, P. Ragupathy, R. Velraj, Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation, J. Clean. Prod. 195 (2018) 1149–1161. https://doi.org/10.1016/j.jclepro.2018.05.199.
[16] A.E.E. Kabeel, W.M. El-maghlany, Y.A.F. El-Samadony, W.M. El-maghlany, Comparative study on the solar still performance utilizing different PCM, Desalination 432 (2018) 89–96. https://doi.org/10.1016/J.DESAL.2018.01.016.
[17] A.E. Kabeel, S.A. El-agouz, R. Sathyamurthy, T. Arunkumar, Augmenting the productivity of solar still using jute cloth knitted with sand heat energy storage, Desalination 443 (2018) 122–129. https://doi.org/10.1016/j.desal.2018.05.026.
[18] D.R. Mishra, A.K. Tiwari, Effect of coal and metal chip on the solar still, J. Sci. Tech. Res. 3 (2013) 1–6. ISSN: 2278-3350.
[19] K. Khanafer, K. Vafai, A review on the applications of nanofluids in solar energy field, Renew. Energy 123 (2018) 398–406. https://doi.org/10.1016/j.renene.2018.01.097.
[20] H.S. Deshmukh, S.B. Thombre, Solar distillation with single basin solar still using sensible heat storage materials, Desalination 410 (2017) 91–98. https://doi.org/10.1016/j.desal.2017.01.030.
[21] P. Dumka, Y. Kushwah, A. Sharma, D.R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still, Desalination 459 (2019). https://doi.org/10.1016/j.desal.2019.02.012.
[22] T. Rajaseenivasan, R. Prakash, K. Vijayakumar, K. Srithar, Mathematical and experimental investigation on the influence of basin height variation and stirring of water by solar PV panels in solar still, Desalination 415 (2017) 67–75. https://doi.org/10.1016/j.desal.2017.04.010.
[23] Z.M. Omara, A.S. Abdullah, T. Dakrory, Improving the productivity of solar still by using water fan and wind turbine, Sol. Energy 147 (2017) 181–188. https://doi.org/10.1016/j.solener.2017.03.041.
[24] A.E. Kabeel, R. Sathyamurthy, S.W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, M.S. El Kady, Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO 2 nano black paint, J. Clean. Prod. 213 (2019) 185–191. https://doi.org/10.1016/j.jclepro.2018.12.185.
[25] P. Dumka, D.R. Mishra, Performance evaluation of single slope solar still augmented with the ultrasonic fogger, Energy 190 (2020). https://doi.org/10.1016/j.energy.2019.116398.
[26] R. Kumar, D.R. Mishra, P. Dumka, Improving solar still performance : A comparative analysis of conventional and honeycomb pad augmented solar stills, 270 (2024). https://doi.org/10.1016/j.solener.2024.112408.
[27] P. Dumka, N. Pandey, D.R. Mishra, Journal of Solar Energy Research ( JSER ) Conventional Solar Still Augmented with Saltwater Bottles : An Experimental Study, 9 (2024) 1811–1821. https://doi.org/10.22059/jser.2024.374131.1392.
[28] S. Shoeibi, F. Jamil, S.M. Parsa, S. Mehdi, H. Kargarsharifabad, S.A.A. Mirjalily, W. Guo, H.H. Ngo, B.-J. Ni, M. Khiadani, Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review, J. Energy Storage 94 (2024) 112401. https://doi.org/10.1016/j.est.2024.112401.
[29] S. Shoeibi, H. Kargarsharifabad, M. Khiadani, S.M. Parsa, S.A.A. Mirjalily, H.A. Mohammed, Techniques used to enhance condensation rate of solar desalination systems: State-of-the-art review, Int. Commun. Heat Mass Transf. 159 (2024) 108164. https://doi.org/10.1016/j.icheatmasstransfer.2024.108164.
[30] A. Hemmatian, H. Kargarsharifabad, A. Abedini Esfahlani, N. Rahbar, S. Shoeibi, Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis, Sol. Energy 269 (2024) 112371. https://doi.org/10.1016/j.solener.2024.112371.
[31] B. Khalili, H. Kargarsharifabad, N. Rahbar, A. Abedini Esfahlani, E. Jamshidi, Performance evaluation of a CGS gas heater-powered HDH desalination system using thermosyphon heat pipes: An experimental study with economic and environmental assessment, Int. Commun. Heat Mass Transf. 152 (2024) 107300. https://doi.org/10.1016/j.icheatmasstransfer.2024.107300.
[32] H.K.M.S.A.A. Ramasamy Dhivagar Shahin Shoeibi, M. Khiadani, Performance analysis of solar desalination using crushed granite stone as an energy storage material and the integration of solar district heating, Energy Sources, Part A Recover. Util. Environ. Eff. 46 (2024) 1370–1388. https://doi.org/10.1080/15567036.2023.2299693.
[33] W.A. Abdelmaksoud, Enhancing water productivity of solar still using thermal energy storage material and flat plate solar collector, Appl. Water Sci. 15 (2025). https://doi.org/10.1007/s13201-024-02340-x.
[34] M.P.R. Teles, M. Sadi, K.A.R. Ismail, A. Arabkoohsar, B.V.F. Silva, H. Kargarsharifabad, S. Shoeibi, Cooling supply with a new type of evacuated solar collectors: a techno-economic optimization and analysis, Environ. Sci. Pollut. Res. 31 (2024) 18171–18187. https://doi.org/10.1007/s11356-023-25715-0.
[35] M. Bhargva, M. Sharma, A. Yadav, N.K. Batra, R.K. Behl, Productivity Augmentation of a Solar Still with Rectangular Fins and Bamboo Cotton Wick, J. Sol. Energy Res. 8 (2023) 1410–1416. https://doi.org/10.22059/jser.2023.356414.1279.
[36] A. Farzi, R. Nameni, H. Asadollahi, Enhancement of single slope solar still using sand : the effect of sand grain size distribution, J. Sol. Energy Res. 6 (2021) 740–750. https://doi.org/10.22059/jser.2021.320642.1194.
[37] M. Gholizadeh, A. Farzi, Performance Improvement of the single slope Solar Still Using Sand, J. Sol. Energy Res. 5 (2020) 560–567. https://doi.org/10.22059/jser.2020.302120.1152.
[38] S. Ahmed, K. Mohammad, S. Bhuiya, P. Das, A. Shahriyar, A. Haque, Z. Tasnim, M. Jahan, Journal of Solar Energy Research ( JSER ) Advancements in Solar Still Water Desalination : A Comprehensive Review of Design Enhancements and Performance Optimization, 9 (2025) 2025–2061. https://doi.org/10.22059/jser.2025.382301.1464.
[39] S.A. Alamshah, M. Talebzadegan, M. Moravej, Performance Evaluation of Regular Hexagonal Pyramid Three-Dimensional Solar Desalination System: An Experimental Investigation, J. Sol. Energy Res. 9 (2024) 1914–1925. https://doi.org/10.22059/jser.2024.370071.1371.
[40] R.K. Das, A. Date, Sustainable water desalination using eductor and waste heat : A review and suggestion for future research, 603 (2025). https://doi.org/10.1016/j.desal.2025.118687.
[41] M. El-Sayed M. Essa, H.S. El-sayed, E.E. El-kholy, M. Amer, M. Elsisi, U. Sajjad, K. Hamid, H. El-sayed Awad, Developments in solar-driven desalination: Technologies, photovoltaic integration, and processes, Energy Convers. Manag. X 25 (2025). https://doi.org/10.1016/j.ecmx.2024.100861.
[42] R. V Dunkle, Solar water distillation: the roof type still and a multiple effect diffusion still, in: Int. Dev. Heat Transf. ASME, Proc. Int. Heat Transf. Part V, Univ. Color., 1961: pp. 895–902.
[43] P.I. Cooper, Digital simulation of transient solar still processes, Sol. Energy 12 (1969) 313–331. https://doi.org/10.1016/0038-092X(69)90046-2.
[44] P.I. Cooper, The maximum efficiency of single-effect solar stills, Sol. Energy 15 (1973). https://doi.org/10.1016/0038-092X(73)90085-6.
[45] B. Frick, Some new considerations about solar stills, in: Proc. Int. J. Sol. Energy, Melbourne, 1970: p. 395.
[46] N.J. K., G.N. Tiwari, M.S. Sodha, PERIODIC THEORY OF SOLAR STILL, 4 (1980) 41–57. https://doi.org/10.1002/er.4440040106.
[47] M.S. Sodha, U. Singh, A. Kumar, G.N. Tiwari, Transient analysis of solar still, Energy Convers. Manag. 20 (1980) 191–195. https://doi.org/10.1016/0196-8904(80)90033-3.
[48] W.A. Kamal, A theoretical and experimental study of the basin-type solar still under the arabian gulf climatic conditions, Sol. Wind Technol. 5 (1988) 147–157. https://doi.org/10.1016/0741-983X(88)90074-4.
[49] S. Kumar, G.N. Tiwari, Estimation of convective mass transfer in solar distillation systems, Sol. Energy 57 (1996) 459–464. https://doi.org/10.1016/S0038-092X(96)00122-3.
[50] P.T. Tsilingiris, The application and experimental validation of a heat and mass transfer analogy model for the prediction of mass transfer in solar distillation systems, Appl. Therm. Eng. 50 (2013) 422–428. https://doi.org/10.1016/j.applthermaleng.2012.07.007.
[51] T. Kiatsiriroat, S.C. Bhattacharya, P. Wibulswas, Prediction of mass transfer rates in solar stills, Energy 11 (1986) 881–886. https://doi.org/10.1016/0360-5442(86)90007-1.
[52] J.A. Clark, The steady-state performance of a solar still, Sol. Energy 44 (1990) 43–49. https://doi.org/10.1016/0038-092X(90)90025-8.
[53] D. B. Spalding, Convective Mass Transfer, Arnold, London, 1963.
[54] G.N. Tiwari, A. Tiwari, Shyam, Solar Distillation, Pergamon, Oxford, U.K, UK, 2016. https://doi.org/10.1007/978-981-10-0807-8_13.
[55] J.A. Esfahani, N. Rahbar, M. Lavvaf, Utilization of thermoelectric cooling in a portable active solar still - An experimental study on winter days, Desalination 269 (2011) 198–205. https://doi.org/10.1016/j.desal.2010.10.062.
[56] H.J.H. Brouwers, Film condensation on non-isothermal vertical plates, Int. J. Heat Mass Transf. 32 (1989) 655–663. https://doi.org/10.1016/0017-9310(89)90213-5.
[57] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th ed., John Wiley & Sons, Hoboken, NJ, 2018. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
[58] G. Biswas, S.K. Som, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw-Hill Education, 2003. ISBN: 0070702594, 9780070702592.