A Local control scheme for voltage harmonic compensation and improvement of reactive and harmonic powers sharing for PV inverters with LCL filter in islanded microgrids

Document Type : Original Article

Author

Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

10.22059/jser.2025.387597.1510

Abstract

This paper proposes a local control scheme to improve voltage quality and achieve accurate reactive and harmonic power sharing for photovoltaic (PV) inverters with LCL filters in an islanded microgrid (MG). The proposed control structure uses a modified reactive power-voltage (Q-E) droop controller to achieve reactive power sharing and prevent overloading of PV inverters, where the droop coefficient is precisely adjusted by considering the limited inverter capacity and the harmonic power of the load. Additionally, an adaptive virtual impedance (VI) loop is employed in the structure to compensate voltage harmonics and improve the sharing of fundamental and harmonic current components among the PV inverters. The proposed adaptive VI loop, based on the circulating currents of the fundamental and harmonic components, adaptively enhances the sharing of reactive and harmonic powers. In contrast to conventional VI schemes, where load sharing is achieved at the cost of additional harmonic voltage distortions, the proposed adaptive VI structure has a minimal impact on the output voltage quality of the PV inverters. The design process and parameter determination of the proposed structure are thoroughly explained, and simulation results in MATLAB/Simulink are provided to demonstrate the effectiveness of the proposed method.

Keywords

[1] Liserre, M., Sauter, T., Hung, J. Y. (2010). Future energy systems: Integ.rating re.newable en.ergy so.urces into the sm.art po.wer grid thr.ough indu.strial electro.nics. IEEE Indu.strial Elect.ronics M.agazine, 4(1), 18-37. https://doi.org/10.1109/MIE.2010.935861
[2] Wang, K., Yuan, X., Geng, Y., Wu, X. (2019). A practical struc.ture and control for re.active po.wer shari.ng in mi.crogrid. IEEE Transa.ctions on Sm.art Grid, 10(2), 1880-1888. https://doi.org/10.1109/TSG.2017.2779846
 [3] IEEE Sta.ndard 15.47.4-2011. (2011). IEEE gu.ide for desi.gn, operation, and inte.gration of d.istributed re.source isl.and syst.ems with el.ectric power systems. https://doi.org/10.1109/IEEESTD.2011.5960751
[4] Lee, T. L., & Hu, S. H. (2011). Resonant current compe.nsator with enhan.cement of har.monic impe.dance for LCL-f.ilter bas.ed a.ctive rect.ifiers. IEEE App.lied Pow.er Elect.ronics Confe.rence and Exposition (A.PEC), 1538-1543. https://doi.org/10.1109/APEC.2011.5744798
 [5] Moussa, H., Shahin, A., Martin, J. P., Nahid-Mobarakeh, B., Pierfederici, S., & Moubayed, N. (2018). Har.monic po.wer shar.ing with voltage distortion compen.sation of droop controlled isla.nded micro.grids. IEEE Trans.actions on Sm.art Grid, 9(5), 5335-5347. https://doi.org/10.1109/TSG.2017.2687058
[6] Sree.kumar, P., & Kh.adkikar, V. (2017). Direc.t control of the inverter impedance to achieve controlla.ble harm.onic sha.ring in the island.ed microg.rid. IEEE Tran.sactions on Ind.ustrial Electronics, 64(1), 827-837. https://doi.org/10.1109/TIE.2016.2574308
[7] Lor.zadeh, I., Abyaneh, H. A., S.avaghebi, M., & Gue.rrero, J. M. (2015). A hi.erarchical control sche.me for rea.ctive po.wer and har.monic cu.rrent sha.ring in islan.ded micr.ogrids. 17th Euro.pean Confe.rence on Power Elec.tronics and Appl.ications (EPE'15 ECCE-Europe, 1-10. https://doi.org/10.1109/EPE.2015.7311770
[8] Mahm.ood, H., Mic.haelson, D., & Jiang, J. (2015). Ac.curate reac.tive power sh.aring in an isla.nded microgrid using ada.ptive virtu.al i.mpedances. IEEE Tr.ansactions on P.ower Elect.ronics, 30(3), 1605-1617. https://doi.org/10.1109/TPEL.2014.2314721
[9] Han, H., Liu, Y., Sun, Y., Su, M., & Guerrero, J. M. (2015). An impro.ved dr.oop co.ntrol stra.tegy for reactive pow.er sh.aring in islan.ded mic.rogrid. IEEE Tran.sactions on Po.wer El.ectronics, 30(6), 313.3-3141. https://doi.org/10.1109/TPEL.2014.2332181
[10] Tulad.har, A., Jin, H., U.nger, T., & Mau.ch, K. (2000). Control of parallel inv.erters in di.stributed AC power syst.ems with con.sideration of line imp.edance effect. IEEE Tra.nsactions on Indu.stry Applica.tions, 36(1), 131-138. https://doi.org/10.1109/28.821807
[11] P.ham, M. D., & Lee, H. H. (2021). Effective coordi.nated virtual impe.dance control for accurate power sharing in isl.anded micr.ogrid. IEEE Transa.ctions on Indus.trial Electr.onics, 68(3), 2279-2288. https://doi.org/10.1109/TIE.2020.2972441
[12] Hoang, T. V., & Lee, H. H. (2021). Virtual impe.dance cont.rol sche.me to compe.nsate for volta.ge harmo.nics with accu.rate harm.onic pow.er shar.ing in isla.nded micr.ogrids. IEEE Journal of Em.erging and Sele.cted Topics in P.ower Electronics, 9(2), 1682-1695. https://doi.org/10.1109/JESTPE.2020.2983447
[13] Wang, Y., Tang, J., Si, J., Xiao, X., Zhou, P., & Zhao, J. (2023). Power q.uality en.hancement in islanded micro.grids via closed-loop a.daptive virtual impedance co.ntrol. Pro.tection and Co.ntrol of Modern Po.wer Systems, 8(1), 10. https://doi.org/10.1186/s41601-023-00284-z
[14] Vijay, A. S., Parth, N., Doolla, S., & Chando.rkar, M. C. (2021). An a.daptive virt.ual imped.ance cont.rol for imp.roving po.wer shari.ng am.ong inver.ters in islan.ded AC micro.grids. IEEE Tra.nsactions on S.mart G.rid, 12(4), 2991-3003. https://doi.org/10.1109/TSG.2021.3062391
[15] Wo.ng, Y. C. C., Lim, C. S., Cruden, A., Rotaru, M. D., & Ray, P. K. (2021). A conse.nsus-based adaptive virtual outp.ut im.pedance control scheme for r.eactive po.wer sh.aring in radial micro.grids. IEEE Tra.nsactions on Indu.stry Applications, 57(1), 784-794. https://doi.org/10.1109/TIA.2020.3031884
[16] Li.ang, X., Anda.lib-Bin-Ka.rim, C., Li, W., Mitolo, M., & S.habbir, M. N. S. K. (2021). Adaptive vir.tual impeda.nce-based rea.ctive po.wer sharing in virtual synch.ronous ge.nerator controlled micro.grids. IEEE Transactions on Industry Applications, 57(1), 46-60. https://doi.org/10.1109/TIA.2020.3039223
[17] Xiao, J., Wang, L., Bauer, P., & Qin, Z. (2024). Virtual Impedance Cont.rol for Load Sharing and Bus Voltage Qu.ality Improveme.nt in Low Vo.ltage AC Micro.grid. IEEE Trans.actions on S.mart Grid, 15(3), 2447-2458. https://doi.org/10.1109/TSG.2023.3325620
[18] Deng, F., Yao, W., Zhang, X., & Mattavelli, P. (2022). A Decen.tralized cu.rrent sha.ring stra.tegy for Islanded resistive microg.rids based on iterative virtual imp.edance regu.lation. IEEE T.ransactions on Industrial Infor.matics, 18(6), 3958-3969. https://doi.org/10.1109/TII.2021.3110951
[19] An, R., L.iu, Z., & Liu, J. (2020). Suc.cessive-approx.imation-b.ased virtual imp.edance tuni.ng method for accu.rate react.ive power sharing in islanded microg.rids. IEEE Tr.ansactions on Power Elect.ronics, 36(1), 87-102. https://doi.org/10.1109/TPEL.2020.3001037
[20] Wa.ng, Y., Zhou, X., T.ang, J., Xiao, X., Zhang, S., & Si, J. (2024). Ad.aptive Har.monic Virtual Impedance Cont.rol for Improving Voltage Quality of Mic.rogrids. Journal of M.odern Pow.er Syste.ms and Cl.ean Ene.rgy, 12(5), 1548-1558. https://doi.org/10.35833/MPCE.2023.000447
[21] Chen, J., Yue, D., Dou, C., Chen, L., Weng, S., & Li, Y. (2021). A virt.ual com.plex im.pedance based P-V dro.op meth.od for par.allel-conn.ected inverters in low-vol.tage AC micro.grids. IEEE Trans.actions on Indu.strial Inform.atics, 17(3), 1763-1773. ttps://doi.org/10.1109/TII.2020.2997054
[22] Na.ndi, R., Tr.ipathy, M., & Gu.pta, C. P. (2024). Advanced Ad.aptive Virtua.l Impedance Based Dual Mode In.verter Con.troller for Po.wer and V.oltage Coor.dination in LV AC Micr.ogrid. IEEE Transa.ctions on In.dustry Appl.ications, 60(6), 8495-8508. https://doi.org/10.1109/TIA.2024.3443777
[23] Zhang, X., Yi, H., Wen, Y., Wang, Z., Li, Q., Kang, F., & Zh.uo, F. (2024). A Decentralized Nonlinear Har.monic Power Sh.aring Sche.me Cons.idering Harmonic Residual Capacity and Working Con.ditions of Fund.amental Load. IEE.E Transa.ctions on Power Elect.ronics, 39(11), 14533-14549. https://doi.org/10.1109/TPEL.2024.3432187
[24] Ndeh, S. G., Ng.washi, D. K., Letting, L. K., Iweh, C. D., & Tanyi, E. (2024). Po.wer sh.aring enhancem.ent thro.ugh a decent.ralized droop-based control st.rategy in an isla.nded micr.ogrid. e-Pri.me-Advances in Electr.ical Engi.neering, Electron.ics and Energy, 7, 100433. https://doi.org/10.1016/j.prime.2024.100433
[25] Mi.shra, B., & P.att.naik, M. (2024). A m.odified droop-based dece.ntralized co.ntrol str.ategy for accurate power shari.ng in a PV-based isl.anded AC microgrid. ISA transact.ions, 153, 467-481. https://doi.org/10.1016/j.isatra.2024.07.032
[26] AlSadat, M., Ibanez, F. M., Elghanam, I., & Terzija, V. (2024). Us.ing low band.width communic.ation th.rough po.wer lines to e.nhance reac.tive po.wer shar.ing for in.verters-based microgrids. Intern.ational Jou.rnal of Ele.ctrical Power & Ene.rgy Sys.tems, 159, 11.0043. https://doi.org/10.1016/j.ijepes.2024.110043
[27] Li, Y., Deng, F., Qi, R., & Li.n, H. (2022). Ada.ptive virt.ual impe.dance regu.lation strat.egy for rea.ctive and harm.onic po.wer shari.ng amo.ng par.alleled vir.tual synchron.ous gene.rators. Interna.tional Jou.rnal of Elec.trical Pow.er & Ener.gy Systems, 140, 108059. https://doi.org/10.1016/j.ijepes.2022.108059
[28] Goh, H. H., Zhang, X., Zhang, D., Dai, W., Liu, J., Li, G., & Goh, K. C. (2024). Harm.onic vir.tual im.pedance co.ntrol in islanded micro.grids for harm.onic po.wer shar.ing and har.monic suppression. CSEE Journal of Pow.er and E.nergy Sys.tems, (Early Access). https://doi.org/10.17775/CSEEJPES.2022.06150
[29] Kim, S., Hyon, S., & An, Y. (2024). Ha.rmonic power sharing con.trol u.sing ad.aptive virtual harmonic imped.ance in isla.nded micro.grids. International Jour.nal of Em.erging El.ectric P.ower Systems, 25(2), 135-148. https://doi.org/10.1515/ijeeps-2022-0200
[30] Hagh.shenas, M. (2024). A Distr.ibuted Co.ntrol Strategy for L.oad Sh.aring and Harm.onic Com.pensation in Islan.ded PV-ba.sed Micr.ogrids. Journal of So.lar En.ergy Rese.arch, 9(2), 1926-1941. https://do.i.org/10.22059/JS.ER.2.024.371687.1377.
[31] Hosseinpour, M., Akbari, R., & Shahparasti, M. (2024). A Robust Photovoltaic Power Conditioning System Connected to Weak Grid Through Virtual Impedance Shaping. Journal of Solar Energy Research, 9(2), 1870-1886. https://doi.o.rg/10.22059/jser.2024.369348.1364
[32] Ghaniz.adeh, R., & Gh.arehpetian, G. B. (2019). Volta.ge quality and load sharing improvement in isl.anded micr.ogrids using dis.tributed hi.erarchical con.trol. IET Re.newable Power Ge.neration, 13(15), 2888-2898.
 https://doi.org/10.1049/iet-rpg.2019.0467
[33] Ghani.zadeh, R., & G.harehpetian, G. B. (2018). Distributed hierarchical control struc.ture for voltage harmonic compe.nsation and ha.rmonic current sharing in isolated MicroGrids. Sust.ainable Energy, Grids and Netw.orks, 16, 55-69. https://doi.org/10.1016/j.segan.2018.05.005
[34] Savaghebi, M., Jalilian, A., Vasquez, J. C., & Guerrero, J. M. (2012). Secondary control for voltage quality enhancement in microgrids. IEEE Transactions on Smart Grid, 3(4), 1893-1902.‏
https://doi.org/10.1109/TSG.2012.2205281
[35] Barklund, E., Pogaku, N., Prodanovic, M., Herna.ndez-Aramburo, C., & Green, T. C. (2008). Energy manage.ment in autono.mous microgrid using stability-constrai.ned droop control of inverters. IEEE Trans.actions on Pow.er Electronics, 23(5), 2346-2352. https://doi.org/10.1109/TPEL.2008.2001910
[36] Nagliero, A., Ricchiuto, D., Mastro.mauro, R. A., & Liserre, M. (2010). Manag.ement of grid-inverter outages and pow.er quality disturbances in distributed power gene.ration syst.ems. Ann.ual Conference on IEEE Indus.trial Electronics Society. 3022-3027 https://doi.org/10.1109/IECON.2010.5674949
[37] IEEE Standard 1459-2010 (2010). IEEE standard definiti.ons for the measurement of electric power quantities under sinuso.idal, nonsinuso.idal, balanced, or unbalanced conditions. 1-50. https://doi.org/10.1109/IEEESTD.2010.5439063
[38] IEEE Standard 1547-2003 (2003). IEEE Standard for Interconnect.ing Dist.ributed Resources with Electric Power S.ystems, 1-28. https://doi.org/10.1109/IEEESTD.2003.94285