[1] Wang, Y., Tang, J., Si, J., Xiao, X., Zhou, P., Zhao. J. (2023). Power quality enhancement in islanded microgrids via closed-loop adaptive virtual impedance control. Protection and Control of Modern Power Systems, 8(10), 1-17.
https://doi.org/10.1186/s41601-023-00284-z.
[2] Lingampalli, B. R., Kotamraju, S. R., (2022). Analysis of passive islanding detection techniques for double line fault in three phase microgrid system. Advances in Electrical and Electronic Engineering, 20(2), 115-130.
[3] Li, S., Oshnoei, A., Blaabjerg, F., Anvari-Moghaddam, A., (2023). Hierarchical Control for Microgrids: A Survey on Classical and Machine Learning-Based Methods.
Sustainability, 15(11), 1-22.
https://doi.org/10.3390/su15118952.
[4] Alonsoa, A. M. S., Brandaoc, D. I., Caldognettod, T., Marafaoa, F. P., Mattavelli, P., (2020). A selective harmonic compensation and power control approach exploiting distributed electronic converters in microgrids. International Journal of Electrical Power and Energy Systems, 115(1), 1-15.
https://doi.org/10.1016/j.ijepes.2019.105452.
[5] Savaghebi, M., Jalilian, A., Vasquez, J. C., Guerrero, JM., (2012). Secondary control for voltage quality enhancement in microgrids,”
IEEE Transactions on Smart Grid, 3(4), 1893-1902.
https://doi.org/10.1109/TSG.2012.2205281.
[6] Savaghebi, M., Jalilian, A., Vasquez, J. C., Guerrero, JM., (2012). Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid.
IEEE Transactions on Smart Grid, 3(2), 797-807.
https://doi.org/10.1109/TSG.2011.2181432.
[7] Savaghebi, M., Vasquez, J. C., Jalilian, A., Guerrero, JM., (2013). Selective compensation of Voltage harmonics in grid-connected microgrids.
International Journal of Mathematics and Computers in Simulation, 91(1), 211-228.
https://doi.org/10.1016/j.matcom.2012.05.015.
[8] Fani B., Zandi, F., Karami-Horestani, A., (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power and Energy Systems, 98(1), 531-542.
[9] Golsorkhi, M. S., Lu, D. D., Guerrero, J. M., (2017). A GPS-based decentralized control method for islanded microgrids. IEEE Transactions on Power Electronics, 32(2), 1615-1625.
[10] Mousavi, S.Y.M., Jalilian, A., Savaghebi, M., Guerrero, J.M., (2018). Autonomous control of current and voltage controlled DG interface inverters for reactive power sharing and harmonics compensation in islanded microgrids.
IEEE Transactions on Power Electronics, 33(11), 9375-86.
https://dx.doi.org/10.1109/TPEL.2018.2792780.
[11] Zhang, Z., Gao, S., Zhong, C., Zhang, Z., Rodríguez, F. J., (2023). Accurate Active and Reactive Power Sharing Based on a Modified Droop Control Method for Islanded Microgrids. Sensors, 23(14), 1-22. https://doi.org/10.3390/s23146269.
[12] Farokhian-Firuzi, M., Roosta, A., Gitizadeh, M., (2019). Stability analysis and decentralized control of inverter-based ac microgrid.
Protection and Control of Modern Power System, 4(1), 1-24.
https://dx.doi.org/10.1186/s41601019-0120-x.
[13] Rashwan, A., Mikhaylov, A., Senjyu, T., Eslami, M., Hemeida, A.M., Osheba, D.S.M, (2023). Modified Droop Control for Microgrid Power-Sharing Stability Improvement.
Sustainability, 15(14), 11220.
https://doi.org/10.3390/su151411220.
[14] Wang, H., Zeng, G., Dai, Y., (2021). Research on modified droop control of distributed generation units by adaptive population-based external optimization. Power System Protection and Control, 45(7), 2483–2491.
[15] Chen, H., Tang, Z., Lu, J., et al. (2021). Research on optimal dispatch of a microgrid based on CVaR quantitative uncertainty. Power System Protection and Control, 49(5), 105–115.
[16] Sahoo, B., Alhaider, M. M., Rout, P. K., (2023). Power quality and stability improvement of microgrid through shunt active filter control application: An overview. Renewable Energy Focus, 44(1), 139-173.
[17] Wang, X., Blaabjerg, F., Chen, Z., (2014). Autonomous control of inverter-interfaced Distributed Generation units for harmonic current iltering and resonance damping in an islanded micro-grid.
IEEE Transactions on Industry Applications, 50(1), 452-461.
https://doi.org/10.1109/TIA.2013.2268734.
[18] Hosseinpour, M., Kholousi, A., (2023). Design and Analysis of LCL-type Grid-Connected PV Power Conditioning System Based on Positive Virtual Impedance Capacitor-Current Feedback Active Damping. Journal of Solar Energy Research, 8(2), 1497-1515.
https://doi.org/10.22059/jser.2023.357089.1286
[19] Zhou, J., et al. (2018). Consensus-based distributed control for accurate reactive, harmonic and imbalance power sharing in microgrids.
IEEE Transactions on Smart Grid, 9(4), 2453–2467.
https://doi.org/10.1109/TSG.2016.2613143.
[20] Gao, Y., Ai, Q., (2018). Distributed cooperative optimal control architecture for AC microgrid with renewable generation and storage. International Journal of Electrical Power and Energy Systems, 96(1), 324-334.
[21] Sreekumar, P., Khadkikar, V., (2017). Direct control of the inverter impedance to achieve controllable harmonic sharing in the islanded microgrid. IEEE Transactions on Industrial Electronics, 64(1), 827–837.
[22] Guerrero, J. M., Matas, J., Vicuña, L. G., Castilla, M., Miret, J., (2017). Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance.
IEEE Transaction on Industrial Electronics, 54(2), 994-1004.
https://doi.org/10.1109/TIE.2007.892621.
[23] Shafiee, Q., Guerrero, J. M., Vasquez, J. C., (2014). Distributed Secondary Control for Islanded Microgrids-A Novel Approach.
IEEE Transaction on Power Electronics, 29(2), 1018-1031.
https://doi.org/10.1109/TPEL.2013.2259506.
[24] Lian, Z., Wen, C., Guo, F., Lin, P., Wu, Q., (2023). Decentralized secondary control for frequency restoration and power allocation in islanded AC microgrids.
International Journal of Electrical Power and Energy Systems, 148(1), 1-9.
https://doi.org/10.1016/j.ijepes.2022.108927.
[25] Sai Thrinath, B. V., Venkata Ramana, C., Meghya Nayak, B., Yashashwini, B., Kumar, N. M., Ezhilvannan, P., (2023). An Uninterrupted Fuzzy-Based PV-BES System for Improving Power Quality in Grid Connected Systems. Journal of Solar Energy Research, 8(3), 1622-1634.
https://doi.org/10.22059/jser.2023.359127.1304
[26] Xin, H., Zhang, L., Wang, Z., Gan, D., Wong, K. P., (2015). Control of Island AC Microgrids Using a Fully Distributed Approach.
IEEE Transactions on Smart Grid, 6(2), 943–945.
https://doi.org/10.1109/TSG.2014.2378694.
[27] Ibacache, R. P., Yazdani, A., Silva, C., Agüero, J. C., (2019). Decentralized Unified Control for Inverter-Based AC Microgrids Subject to Voltage Constraints.
IEEE Access, 7(1), 157318-157329.
https://doi.org/10.1109/ACCESS.2019.2944898.
[28] Gu, W., Lou, G., Tan, W., Yuan, X., (2017). A nonlinear state estimator-based decentralized secondary voltage control scheme for autonomous microgrids. IEEE Transactions on Smart Grid, 32(6), 4794-804.
[29] Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, JM., Bevrani, H., (2019). Decentralized optimal frequency control in autonomous microgrids.
IEEE Transaction on Power Systems, 34(3), 2345-2353.
https://doi.org/10.1109/TPWRS.2018.2889671.
[30] Vasquez, JC., Guerrero, JM., Savaghebi, M., Carrasco, E. G., Teodorescu, R., (2013). Modeling, Analysis, and Design of Stationary Reference Frame Droop Controlled Parallel Three-Phase Voltage Source Inverters.
IEEE Transaction on Industrial Electronics, 60(4), 1271-1280.
https://doi.org/10.1109/TIE.2012.2194951.
[31] Mohammadzadeh, M., Ketabi, A., (2021). Single and Three Phases Sensitive Load Compensation by Electric Spring Using Proportional-Resonant and Repetitive Controllers. Journal of Solar Energy Research, 6(2), 713-725.
https://doi.org/10.22059/JSER.2021.317583.1190
[32] IEEE Standard 1459 (2010). IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Non-sinusoidal, Balanced, or Unbalanced Conditions.
https://doi.org/10.1109/IEEESTD.2010.5439063.