[1] Manchanda, H., & Kumar, M. (2022). Performance evaluation of a locally designed stepped solar distillation-cum-active drying unit. Journal of Thermal Analysis and Calorimetry, 147(6), 4383-4395. https://doi.org/doi.org/10.1007/s10973-021-10835-x
[2] Moravej, M. (2021). An experimental study of the performance of a solar flat plate collector with triangular geometry. Journal of Solar Energy Research, 6(4), 923-936. doi:
10.22059/JSER.2020.311364.1178
[3] Moravej, M., & Namdarnia, F. (2018). Experimental investigation of the efficiency of a semi-spherical solar piping collector. Journal of Renewable Energy and Environment, 5(2), 22-30. https://doi.org/doi.org/10.30501/jree.2018.88602
[4] Attia, M. E. H., El-Maghlany, W. M., Abdelgaied, M., & Elharidi, A. M. (2022). Finest concentration of phosphate grains as energy storage medium to improve hemispherical solar distillate: An experimental study. Alexandria Engineering Journal, 61(7), 5573-5583. https://doi.org/doi.org/10.1016/j.aej.2021.11.014
[5] Ezzarrouqy, K., Hejjaj, A., Idlimam, A., Nouh, F. A., & Mandi, L. (2022). Study of the energetic, exergetic, and thermal balances of a solar distillation unit in comparison with a conventional system during the distillation of rosemary leaves. Environmental Science and Pollution Research, 29(17), 25709-25722. https://doi.org/doi.org/10.1007/s11356-021-17612-1
[6] Abd Elbar, A. R., & Hassan, H. (2020). Enhancement of hybrid solar desalination system composed of solar panel and solar still by using porous material and saline water preheating. Solar Energy, 204, 382-394. https://doi.org/doi.org/10.1016/j.solener.2020.04.058
[7] Zanganeh, P., Goharrizi, A. S., Ayatollahi, S., Feilizadeh, M., & Dashti, H. (2020). Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study. Applied energy, 268, 114923. https://doi.org/doi.org/10.1016/j.apenergy.2020.114923
[8] Modi, K. V., & Nayi, K. H. (2020). Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still. Renewable energy, 153, 1307-1319. https://doi.org/doi.org/10.1016/j.renene.2020.02.095
[9] Saravanan, A., & Murugan, M. (2020). Performance evaluation of square pyramid solar still with various vertical wick materials–an experimental approach. Thermal Science and Engineering Progress, 19, 100581. https://doi.org/doi.org/10.1016/j.tsep.2020.100581
[10] Radomska, E., Mika, L., Sztekler, K., & Kalawa, W. (2021). Experimental validation of the thermal processes modeling in a solar still. Energies, 14(8), 2321. https://doi.org/doi.org/10.3390/en14082321
[11] Poonia, S., Singh, A., & Jain, D. (2020). Design development and performance evaluation of concentrating solar thermal desalination device for hot arid region of India. Desalination and Water Treatment, 205, 1-11. https://doi.org/doi: 10.5004/dwt.2020.26381
[12] Abed, F. M., Eleiwi, M. A., Hasanuzzaman, M., Islam, M., & Mohammed, K. I. (2020). Design, development and effects of operational conditions on the performance of concentrated solar collector based desalination system operating in Iraq. Sustainable Energy Technologies and Assessments, 42, 100886. https://doi.org/doi.org/10.1016/j.seta.2020.100886
[13] Muthu Manokar, A., Prince Winston, D., Sathyamurthy, R., Kabeel, A., & Rama Prasath, A. (2019). Experimental investigation on pyramid solar still in passive and active mode. Heat and Mass Transfer, 55, 1045-1058. https://doi.org/doi.org/10.1007/s00231-018-2483-3
[14] Kabeel, A. E., Abdelgaied, M., & Almulla, N. (2016). Performances of pyramid-shaped solar still with different glass cover angles: experimental study. 2016 7th International Renewable Energy Congress (IREC), doi.
10.1109/IREC.2016.7478869
[15] Chaichan, M. T., Kazem, H. A., Abaas, K. I., & Al-Waeli, A. A. (2016). Homemade solar desalination system for Omani families. International Journal of Scientific & Engineering Research, 7(5), 1499-1504.
[16] Siva Sankaran, N., & Sridharan, M. (2022). Experimental research and performance study of double slope single basin solar distillation still using CFD techniques. International Journal of Ambient Energy, 43(1), 3796-3803. https://doi.org/doi.org/10.1080/01430750.2020.1852109
[17] Shakerian, M., Karrabi, M., Gheibi, M., Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2022). Evaluating the Performance of a Solar Distillation Technology in the Desalination of Brackish Waters. Processes, 10(8), 1626. https://doi.org/doi.org/10.3390/pr10081626
[18] Kumar, M. M., Rajesh, S., Appadurai, M., & Gnanaraj, S. J. P. (2022). Performance enhancement of solar distillation system with internal modification. Materials Today: Proceedings, 62, 5452-5455. https://doi.org/doi.org/10.1016/j.matpr.2022.04.116
[19] Naghdi, B., Roghabadi, F. A., & Soleimani-Gorgani, A. (2024). Salt-resistant solar water desalination system via surface modification and configuration engineering. Desalination, 577, 117390. https://doi.org/https://doi.org/10.1016/j.desal.2024.117390.
[20] Senthilkumar, N., Deepanraj, B., Sundar, L. S., & Ravikumar, N. (2024). Optimizing the Productivity of Solar Water Desalination System Using Firefly Algorithm. 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), doi: IEEE.
10.1109/INCOS59338.2024.10527668
[21] Mohammed, R. H., Qasem, N. A., Farid, A., Zubair, S. M., Alsaman, A. S., Askalany, A. A., & Ali, E. S. (2023). A novel solar-powered thermal desalination unit coupled with a reverse osmosis plant to increase overall water recovery. Applied Thermal Engineering, 234, 121306. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2023.121306
[22] Zhang, S., Wang, J., Zhao, B., Zhou, L., Liu, N., Lan, Q., & Liu, J. (2024). A self-floating integrated hydrogel evaporator with efficient salt resistance and thermal localization for efficient solar water desalination. Chemical Engineering Journal,152302. https://doi.org/https://doi.org/10.1016/j.cej.2024.152302
[23] Omara, Z., Alawee, W. H., Mohammed, S. A., Dhahad, H. A., Abdullah, A., & Essa, F. A. (2022). Experimental study on the performance of pyramid solar still with novel convex and dish absorbers and wick materials. Journal of Cleaner Production, 373, 133835. https://doi.org/doi.org/10.1016/j.jclepro.2022.133835
[24] Agrawal, A., Rana, R., & Srivastava, P. K. (2017). Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies, 3(4), 466-482. https://doi.org/doi.org/10.1016/j.reffit.2017.05.003
[25] Fathy, M., Hassan, H., & Ahmed, M. S. (2018). Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Solar Energy, 163, 54-61. https://doi.org/doi.org/10.1016/j.solener.2018.01.043