Optimizing Solar Drying Systems: A Comprehensive Study on an Innovative Design, Simulation, and Performance Assessment

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, University of Nigeria, Nsukka, 410001, Nigeria.

2 Department of Electrical Engineering, University of Nigeria, Nsukka, 410001, Nigeria

3 Department of Mechanical Engineering, University of Nigeria, Nsukka, 410001, Nigeria

10.22059/jser.2024.374033.1389

Abstract

Solar drying is a sustainable and environmentally friendly method for preserving food and agricultural products. This paper presents the design, development, and performance evaluation of an innovative solar dryer that incorporates three solar collectors spatially arranged at angles of 900 from each other on the horizontal plane for enhanced performance and phase change material (PCM). A passive solar dryer with three solar heat collectors has been designed and its performance simulated. It aims to improve the efficiency and reliability of solar drying processes, reducing post-harvest losses and energy consumption. Results from the system simulation using Ansys 2023 show a drying temperature range of 45-58oC and air velocity flow of 10-15ms-1, these distinct parameters necessary for effective drying are higher than the values reported in the literature. Also, the plots of the scaled residuals presented in this study suggests better convergence trends in the simulation and indicates how close the numerical solution is to a steady state and proves that this new design is a promising replacement for the old variants of solar dryers with one FPSC. In the final section, generalization of the study findings and possible design improvements have been pointed out.

Keywords

[1]         Y. A. Demissie, R. E. Abreham, H. M. Wassie, and M. Z. Getie, “Advancements in solar greenhouse dryers for crop drying,” Energy Reports, vol. 11, no. April, pp. 5046–5058, 2024, doi: 10.1016/j.egyr.2024.04.058.
[2]         F. Román, Z. Munir, and O. Hensel, “Performance comparison of a fixed-bed solar grain dryer with and without latent heat storage,” Energy Convers. Manag. X, vol. 22, no. April, 2024, doi: 10.1016/j.ecmx.2024.100600.
[3]         C. Suvanjumrat, I. Chuckpaiwong, W. Chookaew, and J. Priyadumkol, “Assessment of the pineapple drying with a forced convection solar-electrohydrodynamic dryer,” Case Stud. Therm. Eng., vol. 59, no. April, p. 104582, 2024, doi: 10.1016/j.csite.2024.104582.
[4]         N. Akram et al., A comprehensive review on nanofluid operated solar flat plate collectors, vol. 139, no. 2. 2020. doi: 10.1007/s10973-019-08514-z.
[5]         A. Bhanudas, V. P. Chandramohan, V. R. K. Raju, and V. Meda, “A review on indirect type solar dryers for agricultural crops – Dryer setup , its performance , energy storage and important highlights,” Appl. Energy, vol. 258, no. May 2019, p. 114005, 2020, doi: 10.1016/j.apenergy.2019.114005.
[6]         S. Kumar, N. Kumar, and D. Rakshit, “A comprehensive analysis on advances in application of solar collectors considering design , process and working fluid parameters for solar to thermal conversion,” Sol. Energy, vol. 208, no. September, pp. 1114–1150, 2020, doi: 10.1016/j.solener.2020.08.042.
[7]         L. Fernandes and P. B. Tavares, “A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers,” Solar, vol. 4, no. 1, pp. 15–42, 2024, doi: 10.3390/solar4010002.
[8]         M. Salhi et al., “Experimental and numerical investigation of the incorporation of an air temperature controller for indirect solar dryers,” Energy Convers. Manag. X, vol. 23, no. July, p. 100658, 2024, doi: 10.1016/j.ecmx.2024.100658.
[9]         S. A. Mohammed, W. H. Alawee, M. T. Chaichan, A. S. Abdul-Zahra, M. A. Fayad, and T. M. Aljuwaya, “Optimized solar food dryer with varied air heater designs,” Case Stud. Therm. Eng., vol. 53, no. October 2023, p. 103961, 2024, doi: 10.1016/j.csite.2023.103961.
[10]       S. Yematawu, B. Tamrat, D. Tarekegn, and H. Mulugeta, “Experimental testing on the performance of solar dryer equipped with evacuated tube collector, rock bed heat storage and reflectors,” Energy Reports, vol. 12, no. June, pp. 453–471, 2024, doi: 10.1016/j.egyr.2024.06.027.
[11]       M. Rezaei et al., “Investigating performance of a new design of forced convection solar dryer,” Sustain. Energy Technol. Assessments, vol. 50, no. June 2021, p. 101863, 2022, doi: 10.1016/j.seta.2021.101863.
[12]       A. Salvatierra-rojas, I. Ramaj, S. Romuli, and J. Müller, “applied sciences CFD-Simulink Modeling of the Inflatable Solar Dryer for Drying Paddy Rice,” 2021.
[13]       E. Kontaxakis, I. Fysarakis, F. Mavromatakis, and D. Lydakis, “Enhanced Grape Drying Using Indirect Solar Dryers : Improved Quality and,” J. Food Prot., p. 100342, 2024, doi: 10.1016/j.jfp.2024.100342.
[14]       M. Simo-Tagne, H. D. Tamkam Etala, A. Tagne Tagne, M. C. Ndukwu, and M. El Marouani, “Energy, environmental and economic analyses of an indirect cocoa bean solar dryer: A comparison between natural and forced convections,” Renew. Energy, vol. 187, pp. 1154–1172, 2022, doi: 10.1016/j.renene.2022.02.015.
[15]       B. C. Lim et al., “Design, development and testing of Universiti Malaysia Sabah (UMS) eco-solar dryer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1173, no. 1, p. 012069, 2021, doi: 10.1088/1757-899x/1173/1/012069.
[16]       H. Krabch, R. Tadili, and A. Idrissi, “Design, realization and comparison of three passive solar dryers. Orange drying application for the Rabat site (Morocco),” Results Eng., vol. 15, no. June, p. 100532, 2022, doi: 10.1016/j.rineng.2022.100532.
[17]       A. Tesfaye and N. G. Habtu, “Fabrication and Performance Evaluation of Solar Tunnel Dryer for Ginger Drying,” Int. J. Photoenergy, vol. 2022, 2022, doi: 10.1155/2022/6435080.
[18]       F. E. Gunawan et al., “Design and energy assessment of a new hybrid solar drying dome - Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0,” IOP Conf. Ser. Earth Environ. Sci., vol. 998, no. 1, pp. 0–11, 2022, doi: 10.1088/1755-1315/998/1/012052.
[19]       R. E. Predolin, M. C. Ito, G. L. Palma, and V. L. Scalon, “An experimental and numerical investigation of absorber positioning in a natural convection solar drying system,” Sol. Energy, vol. 243, no. July, pp. 431–442, 2022, doi: 10.1016/j.solener.2022.08.012.
[20]       Hashemian, N., & Noorpoor, A. (2023). Thermo-eco-environmental Investigation of a Newly Developed Solar/wind Powered Multi-Generation Plant with Hydrogen and Ammonia Production Options. Journal of Solar Energy Research, 8(4), 1728-1737. doi: 10.22059/jser.2024.374028.1388
[21]       Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788-797. https://doi.org/10.1016/j.enconman.2019.05.039
[22]       A. Mawire, M. Ramokali, M. Mothupi, and M. Vanierschot, “An experimental evaluation of drying banana slices using a novel indirect solar dryer under variable conditions,” Heliyon, vol. 10, no. 7, p. e28268, 2024, doi: 10.1016/j.heliyon.2024.e28268.
[23]       A. Aacharya, C. Rissler, B. Baral, T. Lhendup, M. Andersson, and H. Davidsson, “Development of a novel solar dryer with an incorporated heat exchanger,” Sol. Energy, vol. 269, no. September 2023, p. 112327, 2024, doi: 10.1016/j.solener.2024.112327.
[24]       V. G. Nguyen et al., “Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer,” Case Stud. Therm. Eng., vol. 60, no. June, p. 104743, 2024, doi: 10.1016/j.csite.2024.104743.
[25]       B. Kumar and Z. Szamosi, “DESIGN AND DEVELOPMENT OF NATURAL,” pp. 144–150, 2021.
[26]       O. Dimitriev, T. Yoshida, and H. Sun, “Principles of solar energy storage,” Energy Storage, vol. 2, no. 1, 2020, doi: 10.1002/est2.96.
[27]       B. Lamrani, “Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates d e,” vol. 228, 2021, doi: 10.1016/j.energy.2021.120598.
[28]       N. M. Ortiz-Rodríguez, M. Condorí, G. Durán, and O. García-Valladares, “Solar drying Technologies: A review and future research directions with a focus on agroindustrial applications in medium and large scale,” Appl. Therm. Eng., vol. 215, no. June, 2022, doi: 10.1016/j.applthermaleng.2022.118993.
[29]       O. A. Babar, A. Tarafdar, S. Malakar, V. K. Arora, and P. K. Nema, “Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products,” J. Food Process Eng., vol. 43, no. 10, 2020, doi: 10.1111/jfpe.13484.
[30]       P. Pruengam, S. Pathaveerat, and P. Pukdeewong, “Case Studies in Thermal Engineering Fabrication and testing of double-sided solar collector dryer for drying banana,” Case Stud. Therm. Eng., vol. 27, no. August, p. 101335, 2021, doi: 10.1016/j.csite.2021.101335.
[31]       M. Kumar, S. K. Sansaniwal, and P. Khatak, “Progress in solar dryers for drying various commodities,” Renew. Sustain. Energy Rev., vol. 55, pp. 346–360, 2016, doi: 10.1016/j.rser.2015.10.158.
[32]       A. D. Chaudhari and P. S. P. Salve, “A Review of Solar Dryer Technologies,” no. January 2014, 2022.
[33]       A. Benhamza, A. Boubekri, A. Atia, and T. Hadibi, “Drying uniformity analysis of an indirect solar dryer based on computational fluid dynamics and image processing,” Sustain. Energy Technol. Assessments, vol. 47, no. March, p. 101466, 2021, doi: 10.1016/j.seta.2021.101466.
[34]       H. O. Njoku, U. G. Azubuike, E. C. Okoroigwe, and O. V. Ekechukwu, “Tilt angles for optimizing energy reception by fixed and periodically adjusted solar-irradiated surfaces in Nigeria,” Int. J. Energy Water Resour., vol. 4, no. 4, pp. 437–452, 2020, doi: 10.1007/s42108-020-00072-7.
[35]       V. Nagrath, S. H. Haq, H. Mishra, and A. Wazeer, “Theoretical Study on Methods to Increase the Efficiency and Performance of Solar Air Heater,” no. November, 2020.
[36]       M. Zeeshan et al., “Novel design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer for drying tomatoes in Pakistan,” Heliyon, vol. 10, no. 8, p. e29284, 2024, doi: 10.1016/j.heliyon.2024.e29284.
[37]       C. Prajapati and T. Sheorey, “Exploring the efficacy of natural convection in a cabinet type solar dryer for drying gooseberries : An experimental analysis,” J. Agric. Food Res., vol. 14, no. May, p. 100684, 2023, doi: 10.1016/j.jafr.2023.100684.
[38]       G. Barone, A. Buonomano, S. Kalogirou, and P. Ktistis, “A holistic methodology for designing novel flat plate evacuated solar thermal collectors : Modelling and experimental assessment,” Renew. Energy, vol. 232, no. May, p. 120967, 2024, doi: 10.1016/j.renene.2024.120967.
[39]       J. Zheng, R. Febrer, J. Castro, D. Kizildag, and J. Rigola, “A new high-performance flat plate solar collector . Numerical modelling and experimental validation,” Appl. Energy, vol. 355, no. July 2023, p. 122221, 2024, doi: 10.1016/j.apenergy.2023.122221.
[40]       A. Rahman, R. Karim, and M. M. Ehsan, “Results in Engineering Solar energy harvesting from evacuated flat plate collector : Design , thermo-economic analysis , and off design performance,” Results Eng., vol. 20, no. August, p. 101461, 2023, doi: 10.1016/j.rineng.2023.101461.
[41]       V. Shemelin, “Quantitative review on recent developments of flat-plate solar collector design . Part 1 : Front-side heat loss reduction ☆ s Matu ˇ,” vol. 9, no. August, pp. 64–69, 2023, doi: 10.1016/j.egyr.2023.09.144.
[42]       V. Reddy, M. C. Gilago, and V. P. Chandramohan, “Energy and exergy investigation of indirect solar dryer under natural and forced convection while drying muskmelon slices,” Energy Nexus, vol. 8, no. May, p. 100153, 2022, doi: 10.1016/j.nexus.2022.100153.
[43]       K. Nwosu-obieogu, E. Olusola, and S. Bright, “Heliyon Energy and exergy analysis of three leaved yam starch drying in a tray dryer : parametric , modelling and optimization studies,” Heliyon, vol. 8, no. July, p. e10124, 2022, doi: 10.1016/j.heliyon.2022.e10124.
[44]       O. Prakash, V. Laguri, A. Pandey, A. Kumar, and A. Kumar, “Review on various modelling techniques for the solar dryers,” Renew. Sustain. Energy Rev., vol. 62, pp. 396–417, 2016, doi: 10.1016/j.rser.2016.04.028.
[45]       A. Chavan, V. Vitankar, N. Shinde, and B. Thorat, “CFD simulation of solar grain dryer,” Dry. Technol., vol. 0, no. 0, pp. 1–13, 2021, doi: 10.1080/07373937.2020.1863422.
[46]       F. H. C. Vera, A. N. Soriano, and N. P. Dugos, “A Comprehensive Review on the Drying Kinetics of Common Tubers,” pp. 1–10, 2021, doi: 10.14416/j.asep.2021.03.003.
[47]       A. Djebli, S. Hanini, O. Badaoui, and B. Haddad, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renew. Energy, vol. 145, pp. 1494–1506, 2020, doi: 10.1016/j.renene.2019.07.083.
[48]       A. E. Gürel et al., “A detailed investigation of the temperature-controlled fluidized bed solar dryer: A numerical, experimental, and modeling study,” Sustain. Energy Technol. Assessments, vol. 49, no. June 2021, 2022, doi: 10.1016/j.seta.2021.101703.