[1] Hosseinpour, M., Dastgiri, A. and Shahparasti, M., 2024. Design and Analysis of a Power Quality Improvement System for Photovoltaic Generation Based on LCL-Type Grid Connected Inverter. International Journal of Engineering, 37(2), pp.252-267. https://doi.org/10.5829/ije.2024.37.02b.04
[2] He, Y., Wang, X., Ruan, X., Pan, D. and Qin, K., 2020. Hybrid active damping combining capacitor current feedback and point of common coupling voltage feedforward for LCL-type grid-connected inverter. IEEE Transactions on Power Electronics, 36(2), pp.2373-2383. https://doi.org/10.1109/TPEL.2020.3008160
[3] He, Y., Wang, X., Pan, D., Ruan, X. and Su, G., 2021. An ignored culprit of harmonic oscillation in LCL-type grid-connected inverter: Resonant pole cancelation. IEEE Transactions on Power Electronics, 36(12), pp.14282-14294. https://doi.org/10.1109/TPEL.2021.3084810
[4] Zhang, H., Ruan, X., Lin, Z., Wu, L., Ding, Y. and Guo, Y., 2021. Capacitor voltage full feedback scheme for LCL-type grid-connected inverter to suppress current distortion due to grid voltage harmonics. IEEE Transactions on Power Electronics, 36(3), pp.2996-3006. https://doi.org/10.1109/TPEL.2020.3014338
[5] Zou, C., Liu, B., Duan, S. and Li, R., 2014. Influence of delay on system stability and delay optimization of grid-connected inverters with LCL filter. IEEE Transactions on Industrial Informatics, 10(3), pp.1775-1784. https://doi.org/10.1109/TII.2014.2324492
[6] Yao, W., Yang, Y., Zhang, X., Blaabjerg, F. and Loh, P.C., 2017. Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Transactions on Power Electronics, 32(3), pp.2360-2375. https://doi.org/10.1109/TPEL.2016.2565598
[7] Rasekh, N. and Hosseinpour, M., 2020. Adequate tuning of LCL filter for robust performance of converter side current feedback control of grid connected modified–Y-source inverter. International Journal of Industrial Electronics Control and Optimization, 3(3), pp.365-378. https://doi.org/10.22111/ieco.2020.32122.1221
[8] Zhou, L., Chen, Y., Luo, A., Guerrero, J.M., Zhou, X., Chen, Z. and Wu, W., 2016. Robust two degrees‐of‐freedom single‐current control strategy for LCL‐type grid‐connected DG system under grid‐frequency fluctuation and grid‐impedance variation. IET Power Electronics, 9(14), pp.2682-2691. https://doi.org/10.1049/iet-pel.2016.0120
[9] Wu, W., Peng, L., Qi, Y., Liu, Q., Huang, Z., Dong, F., Chen, M. and Wang, B., 2017, October. An improved active damping method with grid-side current feedback to maximize damping ratio for LCL-type grid-connected inverter. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 5607-5611). IEEE. https://doi.org/10.1109/ECCE.2017.8096933
[10] Rasekh, N., Rahimian, M.M., Hosseinpour, M., Dejamkhooy, A. and Akbarimajd, A., 2019, February. A step by step design procedure of PR controller and capacitor current feedback active damping for a LCL-type grid-tied T-type inverter. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) (pp. 612-617). https://doi.org/10.1109/PEDSTC.2019.8697853
[11] Zhu, K., Sun, P., Zhou, L., Du, X. and Luo, Q., 2020. Frequency-division virtual impedance shaping control method for grid-connected inverters in a weak and distorted grid. IEEE Transactions on Power Electronics, 35(8), pp.8116-8129. https://doi.org/10.1109/TPEL.2019.2963345
[12] Xu, J., Xie, S., Zhang, B. and Qian, Q., 2018. Robust grid current control with impedance-phase shaping for LCL-filtered inverters in weak and distorted grid. IEEE Transactions on Power Electronics, 33(12), pp.10240-10250. https://doi.org/10.1109/TPEL.2018.2808604
[13] Chen, X., Zhang, Y., Wang, S., Chen, J. and Gong, C., 2017. Impedance-phased dynamic control method for grid-connected inverters in a weak grid. IEEE Transactions on Power Electronics, 32(1), pp.274-283. https://doi.org/10.1109/TPEL.2016.2533563
[14] Hosseinpour, M., Asad, M. and Rasekh, N., 2021. A step-by-step design procedure of a robust control design for grid-connected inverter by LCL filter in a weak and harmonically distorted grid. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, pp.843-859. https://doi.org/10.1007/s40998-021-00414-z
[15] Hosseinpour, M., Sabetfar, T. and Shahparasti, M., 2023. Grid‐tied PEMFC power conditioning system based on capacitor voltage thorough feedback procedure in a weak and harmonics‐polluted network. Energy Science & Engineering. https://doi.org/10.1002/ese3.1624
[16] Rasekh, N. and Hosseinpour, M., 2020. LCL filter design and robust converter side current feedback control for grid-connected Proton Exchange Membrane Fuel Cell system. International Journal of Hydrogen Energy, 45(23), pp.13055-13067. https://doi.org/10.1016/j.ijhydene.2020.02.227
[17] Akhavan, A., Vasquez, J.C. and Guerrero, J.M., 2020. A simple method for passivity enhancement of current controlled grid-connected inverters. IEEE Transactions on Power Electronics, 35(8), pp.7735-7741. https://doi.org/10.1109/TPEL.2020.2967239
[18] Xie, C., Li, K., Zou, J. and Guerrero, J.M., 2019. Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model. IEEE Transactions on Power Electronics, 35(6), pp.6636-6648. https://doi.org/10.1109/TPEL.2019.2955861
[19] Wang, X., He, Y., Pan, D., Zhang, H., Ma, Y. and Ruan, X., 2022. Passivity enhancement for LCL-filtered inverter with grid current control and capacitor current active damping. IEEE Transactions on Power Electronics, 37(4), pp.3801-3812. https://doi.org/10.1109/TPEL.2021.3111677
[20] Wang, C., Wang, X., He, Y., Pan, D., Zhang, H., Ruan, X. and Chen, X., 2023. Passivity-Oriented Impedance Shaping for LCL-Filtered Grid-Connected Inverters. IEEE Transactions on Industrial Electronics, 70(9), pp.9078-9090. https://doi.org/10.1109/TIE.2022.3210573
[21] Akhavan, A., Mohammadi, H.R., Vasquez, J.C. and Guerrero, J.M., 2020. Passivity-based design of plug-and-play current-controlled grid-connected inverters. IEEE Transactions on Power Electronics, 35(2), pp.2135-2150. https://doi.org/10.1109/TPEL.2019.2920843
[22] Zhao, J., Xie, C., Li, K., Zou, J. and Guerrero, J.M., 2022. Passivity-oriented design of LCL-type grid-connected inverters with Luenberger observer-based active damping. IEEE Transactions on Power Electronics, 37(3), pp.2625-2635. https://doi.org/10.1109/TPEL.2021.3109434
[23] Xie, C., Li, K., Zou, J., Liu, D. and Guerrero, J.M., 2020. Passivity-based design of grid-side current-controlled LCL-type grid-connected inverters. IEEE Transactions on Power Electronics, 35(9), pp.9813-9823. https://doi.org/10.1109/TPEL.2020.2971380
[24] Yang, Z., Shah, C., Chen, T., Teichrib, J. and De Doncker, R.W., 2021. Virtual damping control design of three-phase grid-tied PV inverters for passivity enhancement. IEEE Transactions on Power Electronics, 36(6), pp.6251-6264. https://doi.org/10.1109/TPEL.2020.3035417
[25] Rodriguez-Diaz, E., Freijedo, F.D., Guerrero, J.M., Marrero-Sosa, J.A. and Dujic, D., 2019. Input-admittance passivity compliance for grid-connected converters with an LCL filter. IEEE Transactions on Industrial Electronics, 66(2), pp.1089-1097. https://doi.org/10.1109/TIE.2018.2835374
[26] Hans, F., Schumacher, W., Chou, S.F. and Wang, X., 2019. Passivation of current-controlled grid-connected VSCs using passivity indices. IEEE Transactions on Industrial Electronics, 66(11), pp.8971-8980. https://doi.org/10.1109/TIE.2018.2883261
[27] Rasekh, N., Hosseinpour, M., Dejamkhooy, A. and Akbarimajd, A., 2021. Robust power conditioning system based on LCL-type quasi-Y-source inverter for grid connection of photovoltaic arrays. International Journal of Automation and Control, 15(6), pp.692-709. https://doi.org/10.1504/IJAAC.2021.118526
[28] Harnefors, L., Bongiorno, M. and Lundberg, S., 2007. Input-admittance calculation and shaping for controlled voltage-source converters. IEEE transactions on industrial electronics, 54(6), pp.3323-3334. https://doi.org/10.1109/TIE.2007.904022
[29] Hosseinpour, M., Sabetfar, T., Dejamkhooy, A. and Shahparasti, M., 2023. Design and control of LCL-type grid-tied PV power conditioning system based on inverter and grid side currents double feedback. International Journal of Modelling and Simulation, pp.1-21. https://doi.org/10.1080/02286203.2023.2204319
[30] Wu, H. and Wang, X., 2020. Virtual-flux-based passivation of current control for grid-connected VSCs. IEEE Transactions on Power Electronics, 35(12), pp.12673-12677. https://doi.org/10.1109/TPEL.2020.2997876
[31] Harnefors, L., Wang, X., Yepes, A.G. and Blaabjerg, F., 2016. Passivity-based stability assessment of grid-connected VSCs—An overview. IEEE Journal of emerging and selected topics in Power Electronics, 4(1), pp.116-125. https://doi.org/10.1109/JESTPE.2015.2490549
[32] Wang, X. and Blaabjerg, F., 2019. Harmonic stability in power electronic-based power systems: Concept, modeling, and analysis. IEEE Transactions on Smart Grid, 10(3), pp.2858-2870. https://doi.org/10.1109/TSG.2018.2812712
[33] Ruan, X., Wang, X., Pan, D., Yang, D., Li, W. and Bao, C., 2018. Control techniques for LCL-type grid-connected inverters. Springer Singapore. https://doi.org/10.1007/978-981-10-4277-5
[34] He, Y., Wang, X., Ruan, X., Pan, D., Xu, X. and Liu, F., 2019. Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation. IEEE Transactions on Power Electronics, 34(12), pp.12423-12436. https://doi.org/10.1109/TPEL.2019.2906217
[35] Lu, M., Al-Durra, A., Muyeen, S.M., Leng, S., Loh, P.C. and Blaabjerg, F., 2018. Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters. IEEE Transactions on Power Electronics, 33(10), pp.9033-9046. https://doi.org/10.1109/TPEL.2017.2784685
[36] Harnefors, L., Yepes, A.G., Vidal, A. and Doval-Gandoy, J., 2014. Passivity-based stabilization of resonant current controllers with consideration of time delay. IEEE Transactions on Power Electronics, 29(12), pp.6260-6263. https://doi.org/10.1109/TPEL.2014.2328669
[37] Faiz, M.T., Khan, M.M., Jianming, X., Ali, M., Habib, S., Hashmi, K. and Tang, H., 2020. Capacitor voltage damping based on parallel feedforward compensation method for LCL-filter grid-connected inverter. IEEE Transactions on Industry Applications, 56(1), pp.837-849. https://doi.org/10.1109/TIA.2019.2951115
[38] Bimarta, R. and Kim, K.H., 2020. A robust frequency-adaptive current control of a grid-connected inverter based on LMI-LQR under polytopic uncertainties. IEEE Access, 8, pp.28756-28773. https://doi.org/10.1109/ACCESS.2020.2972028
[39] Padmanaban, S., Priyadarshi, N., Bhaskar, M.S., Holm-Nielsen, J.B., Hossain, E. and Azam, F., 2019. A hybrid photovoltaic-fuel cell for grid integration with jaya-based maximum power point tracking: experimental performance evaluation. IEEE Access, 7, pp.82978-82990. https://doi.org/10.1109/ACCESS.2019.2924264
[40] Kim, Y.J. and Kim, H., 2019. Optimal design of LCL filter in grid‐connected inverters. IET Power Electronics, 12(7), pp.1774-1782. https://doi.org/10.1049/iet-pel.2018.5518
[41] Dragičević, T., Zheng, C., Rodriguez, J. and Blaabjerg, F., 2020. Robust quasi-predictive control of LCL-filtered grid converters. IEEE Transactions on Power Electronics, 35(2), pp.1934-1946. https://doi.org/10.1109/TPEL.2019.2916604
[42] Hosseinpour, M. and Kholousi, A., 2023. Design and Analysis of LCL-type Grid-Connected PV Power Conditioning System Based on Positive Virtual Impedance Capacitor-Current Feedback Active Damping. Journal of Solar Energy Research, 8(2), pp.1497-1515. https://doi.org/10.22059/jser.2023.357089.1286