Reliability Evaluation of Solar Power Plants Equipped with parabolic Trough Reflectors

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Dariun Branch, Islamic Azad University, Dariun, Iran.,

2 Department of Electrical Engineering, Beyza Branch, Islamic Azad University, Beyza, Iran.,

3 Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran

10.22059/jser.2023.359179.1305

Abstract

Due to the challenges of fossil fuels, renewable resources such as wind, solar and ocean are applied for electric power production. Among different kinds of renewable resources, the potential of solar energy is significant in Iran. The electricity cost produced by parabolic trough collectors is low. Accordingly, this paper aims to study the reliability performance of this plant. To this end, a multi-state reliability model considering both failures of composed components and variation of produced power caused by variation of sun irradiance is developed for solar power plants with parabolic trough collectors. To reduce the number of power states of the model, the fuzzy c-means clustering method and XB index are applied. The obtained reliability model of solar plants is utilized for analytical reliability analysis of electric networks. Numerical outcomes of adequacy analysis of RBTS and IEEE-RTS results integration of parabolic trough collectors improve reliability indices of the system. However, due to the variation of sun irradiance results in the variation of plant output, improvement of reliability indices caused by parabolic trough collector is less than traditional plants. Besides, by comparing the outcomes obtained by the proposed work and Monte Carlo method, the accuracy of the suggested method is approved.

Keywords


[1] Kannaiyan, S., Bokde, N. D., & Geem, Z. W. (2020). Solar collectors modeling and controller design for solar thermal power plant. IEEE Access, 8, 81425-81446. DOI: 10.1109/ACCESS.2020.2989003.
[2] Shajan, S., and V. Baiju. (2022). Designing a novel small-scale parabolic trough solar thermal collector with secondary reflector for uniform heat flux distribution. Applied Thermal Engineering, 213, 118660. DOI: 10.1016/j.applthermaleng.2022.118660.
[3] Boukhalfa, M., Merzouk, M., Merzouk, N.K., Feidt, M., Blet, M. (2022). Performance analysis of a parabolic trough collector using a heat pipe exchanger. Environmental Progress & Sustainable Energy, 41(6), e13897. DOI:10.1002/ep.13897.
[4] Ghaedi, A., Abbaspour, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M. (2014). Toward a comprehensive model of large-scale DFIG-based wind farms in adequacy assessment of power systems, IEEE Transactions on Sustainable Energy, 5(1), 55-63. DOI: 10.1109/TSTE.2013.2272947.
[5] Ghaedi, A., Abbaspour, A., Fotuhi-Firuzabad, M., Parvania, M. (2014). Incorporating Large Photovoltaic Farms in Power‎ Generation System Adequacy Assessment, Scientia Iranica 21(3), 924-934.
[6] Khalilzadeh, E., Fotuhi-Firuzabad, M., Aminifar, F., Ghaedi, A. (2014). Reliability modeling of run-of-the-river power plants in power system adequacy studies. IEEE Transactions on Sustainable Energy, 5(4), 1278-1286. DOI: 10.1109/TSTE.2014.2346462.
[7] Mirzadeh, M., Simab, M., Ghaedi, A. (2019). Adequacy studies of power systems with barrage-type tidal power plants. IET Renewable Power Generation, 13(14), 2612-2622. doi: 10.1049/iet-rpg.2018.5325.
[8] Mirzadeh, M., Simab, M., Ghaedi, A., (2020). Reliability evaluation of power systems containing tidal power plant. Journal of Energy Management and Technology, 4(2), 28-38. DOI: 10.22109/jemt.2020.176501.1167.
[9] Nasiriani, K., Ghaedi, A., Nafar, M. (2020). Reliability Evaluation of Power Systems Containing Ocean Thermal Energy Conversion Power Plants. Scientia Iranica, 29(4), 1957-1974. DOI: 10.24200/sci.2020.54805.3927.
[10] Ghaedi, A., Gorginpour, H., (2020). Reliability assessment of composite power systems containing sea wave slot-coned generators. IET Renewable Power Generation, 14(16), 3172-3180. DOI:  10.1049/iet-rpg.2020.0572.
[11] Ghaedi, A., Mahmoudian, M., and Reza Sedaghati, R. (2023). The Impact of Different Solar Tracker Systems on Reliability of Photovoltaic Farms. Journal of Energy Management and Technology, 10.22109/jemt.2023.385194.1432.
[12] Ghaedi, A., Sedaghati, R., and Mahmoudian, M. (2023). Well-being Approach of the Power Systems Integrated to the Central Receiver Power Plants. AUT Journal of Electrical Engineering, DOI: 10.22060/eej.2023.22013.5504.
[13] Ghaedi, A., Sedaghati, R., and Mahmoudian, M. (2023). The Impact of Vanadium-Redox Batteries on the Reliability of Power Systems Integrated with Current-Type Tidal-Turbines. Energy Engineering and Management, 12(4), 2-17. DOI: 10.22052/JEEM.2023.113677.
[14] Nargeszar, A., Ghaedi, A., Nafar, M., Simab, M. (2023). Reliability evaluation of the renewable energy based microgrids considering resource variation. IET Renewable Power Generation, 17(3), 507-527. DOI:10.1049/rpg2.12611.
[15] Ghaedi, A., and Hamed Gorginpour, H. (2021). Reliability evaluation of permanent magnet synchronous generator-based wind turbines considering wind speed variations. Wind Energy 24(11), 1275-1293. DOI: 10.1002/we.2631.
[16] Ghaedi, A., and Gorginpour, H. (2021). Spinning reserve scheduling in power systems containing wind and solar generations. Electrical Engineering, 103, 2507-2526. DOI: 10.1007/s00202-021-01239-z
[17] Ghaedi, A., and Gorginpour, H. (2021). Reliability based operation studies of wave energy converters using modified PJM approach. International Transactions on Electrical Energy Systems, 31(8), e12928. DOI: 10.1002/2050-7038.12928
[18] Ghaedi, A., and Mirzadeh, M. (2020). The impact of tidal height variation on the reliability of barrage-type tidal power plants. International Transactions on Electrical Energy Systems, 30(9), e12477. DOI:10.1002/2050-7038.12477
[19] Ghaedi, A., Nasiriani, K., and Nafar., M. (2020). Spinning Reserve Scheduling in a Power System Containing OTEC Power Plants. International Journal of Industrial Electronics Control and Optimization, 3(3), 379-391. DOI: 10.22111/ieco.2020.32602.1231.
[20] Mirzadeh, M., Simab, M., and Ghaedi. A., (2020). Reliability evaluation of power systems containing tidal power plant. Journal of Energy Management and Technology, 4(2), 28-38. DOI: 10.22109/jemt.2020.176501.1167.
[21] Mirzadeh, M., Simab, M., and Ghaedi. A. (2019). Reliability modeling of reservoir-based tidal power plants for determination of spinning reserve in renewable energy-based power systems. Electric Power Components and Systems, 47(16-17), 1534-1550. DOI: 10.1080/15325008.2019.1659453.
[22] Ouagued, Malika. (2021). Magnesium–Chlorine Cycle for Hydrogen Production Driven by Solar Parabolic Trough Collectors." Journal of Solar Energy Research, 6(3), 799-813. DOI: 10.22059/jser.2021.325041.1204.
[23] Bagheri, A., Esfandiari, N., and Bizhan Honarvar, B. (2019). Improving Performance of Solar Still by External Solar Panels and Cylindrical Parabolic Collector for Seawater Desalination. Journal of Solar Energy Research, 4(2), 163-170. DOI: 10.22059/jser.2019.281770.1112.
[24] Geete, A. (2019). Exergy analyses for parabolic solar collector at different conditions: PAPSC software. Journal of Solar Energy Research, 4(1), 41-52. DOI: 10.22059/jser.2019.70910.
[25] Abdollahi Haghghi, M., Pesteei, S.M., and Chitsaz, A. (2018). Thermodynamic analysis of using parabolic trough solar collectors for power and heating generation at the engineering faculty of Urmia University in Iran. Journal of Solar Energy Research 3.3 (2018): 187-200.
[26] Heidarnejad, P., and A. R. Noorpoor. (2018). Thermodynamic and Thermoeconomic Investigation of a Multi-Generation Energy System Utilizing Solar and Biomass as Energy Sources. Journal of Solar Energy Research, 3(4), 325-341. DOI: 10.22059/jser.2019.283419.1117.
[27] Goel, A., Mahadeva, R., PPatole, S.P., Manik, G. (2023). Dynamic Modeling and Controller Design for a Parabolic Trough Solar Collector. IEEE Access, 11, 33381-33392. DOI: 10.1109/ACCESS.2023.3263473
[28] Guo, S., Pei, S., Wu, F., He, Y., Liu, D. (2020). Modeling of solar field in direct steam generation parabolic trough based on heat transfer mechanism and artificial neural network. IEEE Access, 8, 78565-78575. DOI: 10.1109/ACCESS.2020.2988670.
[29] Shabbir, M.N.S.K., Chowdhury, M.S.A, and Liang, X. (2018). A guideline of feasibility analysis and design for concentrated solar power plants. Canadian Journal of Electrical and Computer Engineering, 41(4), 203-217. DOI: 10.1109/CJECE.2018.2885016.
[30] Waghmare, S.A., Chavan, K.V., and Gulhane., N.P. (2018). Numerical simulation of tracking modes for compound parabolic collector with tubular receiver. IEEE Transactions on Industry Applications, 55(2), 1882-1889. DOI: 10.1109/ICPEICES.2016.7853537.
[31] Di Fraia, S., Figaj, R.D., Filipowiczh, M., Vanoli, L. (2022). Solar-based systems. Polygeneration Systems. Academic Press, 193-237. DOI: 10.1016/B978-0-12-820625-6.00005-0
[32] Brooks, M.J. (2005). Performance of a parabolic trough solar collector. Diss. Stellenbosch: University of Stellenbosch.
[33] Schenk, H., Hirsch, T., Feldhoff, J.F., Wittmann, M. (2014). Energetic comparison of linear Fresnel and parabolic trough collector systems. Journal of Solar Energy Engineering 136(4). DOI: 10.1115/1.4027766.
[34] Fernández-García, A., Zarza, E., Valenzuela, L., Garcia, M.P. (2011). Development of a small-sized parabolic trough collector. Final Capsol project results. ISES Solar World Congress 2011. DOI:10.18086/swc.2011.19.13.
[35] El Gharbi, N., Derbal, H., Bouaichaoui, S., Said, N. (2011), A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia, 6, 565-572. DOI: 10.1016/j.egypro.2011.05.065.
[36] Negahdari, M.R., Ghaedi, A., Nafar, M., Simab, M. (2023). Optimal planning of the barrage-type tidal power plants equipped with the hydro-pumps. Electric Power Systems Research, 220, 109347. DOI: 10.1016/j.epsr.2023.109347
[37] Čepin, M. (2011). Assessment of power system reliability: methods and applications. Springer Science & Business Media.
[38] Bezdek, J.C., Ehrlich, R., Full, W. (1984).  FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 10.2(3), 191-203.
[39] Singh, M., Bhattacharjee, R., Sharma, N., Verma, A. (2017). An improved xie-beni index for cluster validity measure. 2017 Fourth International Conference on Image Information Processing (ICIIP), IEEE. DOI: 10.1109/ICIIP.2017.8313691.
[40] Billinton, R., Kumar, S., Chowdhury, N., Chu, K., Debnath, K., Goel, L., Khan, E., Kos, P., Nourbakh, G. (199). A reliability test system for educational purposes-basic data. IEEE Transactions on Power Systems, 4(3), 1238-1244. DOI: 10.1109/MPER.1989.4310918.
[41] Barrows, C., Bloom, A., Ehlen, A., Ikaheimo, J., Jorgenson, J., Krishnamurthy, D., Lau, J., Mc Bennett, B., O Connell, M., Preston, E., Staid, A., Stephen, G., Watson, J.P. (2019). The IEEE reliability test system: A proposed 2019 update. IEEE Transactions on Power Systems, 35(1), 119-127. DOI: 10.1109/TPWRS.2019.2925557.