Off-Grid Solar PV System Design and Analysis in Isolated Island for Sustainable Energy Access: A Case Study in Sukun Island, Indonesia

Document Type : Original Article


Department of Electrical Power Engineering, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia



This paper presents a preliminary study on the design of an off-grid solar PV system for an isolated island. It conducts a case study for Sukun Island that has the highest potential for solar energy in Indonesia. The study includes climate research, consumption estimation, system sizing, simulation, quasi-dynamic analysis, and environmental analysis. Climate data from Solargis and Meteonorm is utilized. The greatest difficulty in conducting an initial PV system planning study is pre-sizing. Using PVsyst simulation, this study confirms the validity of simplified theoretical calculations stated in the paper for system pre-sizing, with the theoretically calculated system (285 kWp solar power plant with 2.91 MWh storage system) managed to get a Loss of Load Probability (LOLP) valued at 0.17%, meeting applicable standard. The proposed method of combining simulation using PVsyst and quasi-dynamic analysis using DIgSILENT Powerfactory can be used to verify the power stability of the designed PV-BESS system. The simulations attest to the use of battery energy storage systems (BESS) in maintaining the stability of the solar PV network by preventing the vulnerability of electrical networks to insufficient electricity (loss of load) and voltage sags, proven by the minimum voltage level of 96.6%, meeting international safety standards.


  1. Aydin, M. J. R. e. (2019). Renewable and non-renewable electricity consumption–economic growth nexus: evidence from OECD countries. Renewable Energy, 136, 599-606. doi:10.1016/j.renene.2019.01.008
  2. Blimpo, M. P., & Cosgrove-Davies, M. (2019). Electricity access in Sub-Saharan Africa: Uptake, reliability, and complementary factors for economic impact: World Bank Publications.
  3. (2017). COP23 Presidency Operations Manual: UN Climate Change Conference.
  4. Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118. doi:10.1016/
  5. Alshardy, A., Goodwin, S., & Liebman, A. (2021). Data Visualisation for Remote Area Electrification Decision-Making: A Case Study of Indonesia. Paper presented at the Proceedings of the twelfth ACM international conference on future energy systems.
  6. Likadja, F. J., Mauboy, E. R., & Leda, C. M. (2020). Prakiraan Kebutuhan Energi Listrik di Provinsi NTT Tahun 2019-2029 menggunakan Metode Gabungan dan LEAP. Jurnal Media Elektro, 20-28. doi:10.35508/jme.v0i0.2674
  7. Mustayen, A., Rasul, M., Wang, X., Negnevitsky, M., & Hamilton, J. (2022). Remote areas and islands power generation: A review on diesel engine performance and emission improvement techniques. Energy Conversion and Management, 260, 115614. doi:10.1016/j.enconman.2022.115614
  8. Nuttall, W. J., Mestel, B., & Dooley, L. S. (2019). Low carbon futures: Confronting electricity challenges on island systems. Technological Forecasting and Social Change, 147, 36-50. doi:10.1016/j.techfore.2019.06.014
  9. Kalbasi, R., Jahangiri, M., Nariman, A., & Yari, M. (2019). Optimal design and parametric assessment of grid-connected solar power plants in Iran, a review. Journal of Solar Energy Research, 4(2), 142-162. doi:10.22059/JSER.2019.282276.1114
  10. Amiroh, K., Widyantara, H., Setyawan, D. E., & Irzam, M. R. (2023). Design and analysis of switching power vertical wind turbines and solar panels in the equatorial region. Paper presented at the AIP Conference Proceedings.
  11. Alves, M., Segurado, R., & Costa, M. (2020). On the road to 100% renewable energy systems in isolated islands. Energy, 198, 117321. doi:10.1016/
  12. Sánchez, A. S., Junior, E. P., Gontijo, B. M., de Jong, P., & dos Reis Nogueira, I. B. (2023). Replacing fossil fuels with renewable energy in islands of high ecological value: The cases of Galápagos, Fernando de Noronha, and Príncipe. Renewable and Sustainable Energy Reviews, 183, 113527. doi:10.1016/j.rser.2023.113527
  13. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy Research, 9, 1032. doi:10.3389/fenrg.2021.743114
  14. Hannan, M., Faisal, M., Ker, P. J., Begum, R., Dong, Z., & Zhang, C. (2020). Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renewable and Sustainable Energy Reviews, 131, 110022. doi:10.1016/j.rser.2020.110022
  15. Steffen, B., Beuse, M., Tautorat, P., & Schmidt, T. S. (2020). Experience curves for operations and maintenance costs of renewable energy technologies. Joule, 4(2), 359-375. doi:10.1016/j.joule.2019.11.012
  16. Ghadimi, N., Sedaghat, M., Azar, K. K., Arandian, B., Fathi, G., & Ghadamyari, M. (2023). An innovative technique for optimization and sensitivity analysis of a PV/DG/BESS based on converged Henry gas solubility optimizer: A case study. IET Generation, Transmission & Distribution. doi:10.1049/gtd2.12773
  17. Al-Saffar, M., & Musilek, P. (2020). Reinforcement learning-based distributed BESS management for mitigating overvoltage issues in systems with high PV penetration. IEEE Transactions on Smart Grid, 11(4), 2980-2994. doi:10.1109/TSG.2020.2972208
  18. Kumar, N. M., Subathra, M. P., & Moses, J. E. (2018). On-grid solar photovoltaic system: components, design considerations, and case study. Paper presented at the 2018 4th International Conference on Electrical Energy Systems (ICEES).
  19. Lakshika, K. H., Boralessa, M. K. S., Perera, M. K., Wadduwage, D. P., Saravanan, V., & Hemapala, K. M. U. (2020). Reconfigurable solar photovoltaic systems: A review. Heliyon, 6(11).
  20. Naderipour, A., Ramtin, A. R., Abdullah, A., Marzbali, M. H., Nowdeh, S. A., & Kamyab, H. (2022). Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis. Energy, 239, 122303. doi:10.1016/
  21. Yin, J., Molini, A., & Porporato, A. (2020). Impacts of solar intermittency on future photovoltaic reliability. Nature Communications, 11(1), 4781. doi:10.1038/s41467-020-18602-6
  22. Khalkho, A. M., Rapada, B., Majumder, G., Cherukuri, M., & Mohanta, D. K. (2022). Impact assessment of solar power generation uncertainty on smart grid reliability and carbon neutrality. Frontiers in Energy Research, 10, 851449. doi:10.3389/fenrg.2022.851449
  23. Sulaiman, S. I., Ab Majid, H., & Othman, Z. (2022). Loss of load probability minimization for stand-alone photovoltaic system using elephant herding optimization. Energy Reports, 8, 1038-1044. doi:10.1016/j.egyr.2022.05.278
  24. Kumar, R., Rajoria, C., Sharma, A., & Suhag, S. (2021). Design and simulation of standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings, 46, 5322-5328. doi:10.1016/j.matpr.2020.08.785
  25. Satish, M., Santhosh, S., & Yadav, A. (2020). Simulation of a Dubai based 200 KW power plant using PVsyst Software. Paper presented at the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN).
  26. Salmi, M., Baci, A. B., Inc, M., Menni, Y., Lorenzini, G., & Al-Douri, Y. (2022). Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik, 262, 169294. doi:10.1016/j.ijleo.2022.169294
  27. Thotakura, S., Kondamudi, S. C., Xavier, J. F., Quanjin, M., Reddy, G. R., Gangwar, P., & Davuluri, S. L. (2020). Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India. Case Studies in Thermal Engineering, 18, 100602. doi:10.1016/j.csite.2020.100602
  28. Zhao, C., Guo, L., Zhang, X., & Chi, Y. (2019). Optimization Design of Building Integrated Photovoltaic System with LOLP Algorithm. International Journal of Performability Engineering, 15(2), 645. doi:10.23940/ijpe.19.02.p29.645653
  29. Starčević, V., Zeljković, Č., Kitić, N., Mršić, P., Erceg, B., & Jovanović, V. (2021). PV system integration assessment by automated Monte Carlo simulation in DIgSILENT PowerFactory. Paper presented at the 2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH).
  30. Zare Oskouei, M., & Mohammadi-Ivatloo, B. (2020). Modeling and Optimal Operation of Renewable Energy Sources in DIgSILENT PoweFactory. Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory, 51-81.
  31. Hassan, Q. (2021). Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renewable Energy, 164, 375-390. doi:10.1016/j.renene.2020.09.008
  32. Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power & Energy Systems, 115, 105419. doi:10.1016/j.ijepes.2019.105419
  33. Luo, X., Liu, Y., Liu, J., & Liu, X. (2019). Optimal design and cost allocation of a distributed energy resource (DER) system with district energy networks: A case study of an isolated island in the South China Sea. Sustainable Cities and Society, 51, 101726. doi:10.1016/j.scs.2019.101726
  34. Sari, L., Rauzi, E., & Mahmud, M. (2021). Sun-path model as a simple helping tool for architecture students in understanding saving energy building design. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  35. Khatib, T., Mohamed, A., & Sopian, K. (2013). A review of photovoltaic systems size optimization techniques. Renewable and Sustainable Energy Reviews, 22, 454-465. doi:10.1016/j.rser.2013.02.023
  36. Ibrahim, K. H., Hassan, A. Y., AbdElrazek, A. S., & Saleh, S. M. (2023). Economic analysis of stand-alone PV-battery system based on new power assessment configuration in Siwa Oasis–Egypt. Alexandria Engineering Journal, 62, 181-191. doi:10.1016/j.aej.2022.07.034
  37. Abubakar, A., & Almeida, C. F. M. (2020). Analysis of Battery Energy Storage System Sizing in Isolated PV Systems Considering a Novel Methodology and Panel Manufacturers Recommended Methodology. Paper presented at the 2020 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D LA).
  38. Lo Franco, F., Morandi, A., Raboni, P., & Grandi, G. (2021). Efficiency comparison of DC and AC coupling solutions for large-scale PV+ BESS power plants. Energies, 14(16), 4823. doi:10.3390/en14164823
  39. Ali, M. M. E., & Salih, S. K. (2013). A visual basic-based tool for design of stand-alone solar power systems. Energy Procedia, 36, 1255-1264. doi:10.1016/j.egypro.2013.07.142
  40. Aghaei, M., Kumar, N. M., Eskandari, A., Ahmed, H., de Oliveira, A. K. V., & Chopra, S. S. (2020). Solar PV systems design and monitoring. In Photovoltaic Solar Energy Conversion (pp. 117-145): Elsevier.
  41. Mukisa, N., & Zamora, R. (2022). Optimal tilt angle for solar photovoltaic modules on pitched rooftops: A case of low latitude equatorial region. Sustainable Energy Technologies and Assessments, 50, 101821. doi:10.1016/j.seta.2021.101821
  42. Yang, B., Li, W., Zhao, Y., & He, X. (2009). Design and analysis of a grid-connected photovoltaic power system. IEEE Transactions on Power Electronics, 25(4), 992-1000. doi:10.1109/TPEL.2009.2036432
  43. Boroujeni, H. F., Eghtedari, M., Abdollahi, M., & Behzadipour, E. (2012). Calculation of generation system reliability index: Loss of Load Probability. Life Science Journal, 9(4), 4903-4908. doi:10.7537/marslsj090412.736
  44. Gaitán, L. F., Gómez, J. D., & Rivas-Trujillo, E. (2019). Quasi-Dynamic Analysis of a Local Distribution System with Distributed Generation. Study Case: The IEEE 13 Nodes System. TecnoLógicas, 22(46), 140-157. doi:10.22430/22565337.1489
  45. Hatziargyriou, N., Milanovic, J., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., . . . Pal, B. (2020). Definition and classification of power system stability–revisited & extended. IEEE Transactions on Power System, 36(4), 3271-3281. doi:10.1109/TPWRS.2020.3041774
  46. Ymeri, A., Dervishi, L., & Qorolli, A. (2014). Impacts of Distributed Generation in Energy Losses and voltage drop in 10 kV line in the Distribution System. Paper presented at the 2014 IEEE International Energy Conference (ENERGYCON).