[1] Ridoy, A., Khan, N., Kafle, B., Schmidt, S., Clochard, L., Hofmann, M., & Rentsch, J. (2022). Optimizing Emitter Diffusion Process for Atmospheric Pressure Dry Nanotextured Monocrystalline PERC. IEEE Journal of Photovoltaics, 12(1), 244–250. DOI: 10.1109/jphotov.2021.3130007.
[2] Sengupta, S., Sengupta, S., & Saha, H. (2020). Comprehensive Modeling of Dust Accumulation on PV Modules Through Dry Deposition Processes. IEEE Journal of Photovoltaics, 10(4), 1148–1157. DOI: 10.1109/jphotov.2020.2992352
[3] Zhao, W., Lv, Y., Zhou, Q., & Yan, W. (2021). Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy, 233, 121240. DOI: 10.1016/j.energy.2021.121240.
[4] Aydin, D., Ezenwali, S. E., Alibar, M. Y., & Chen, X. (2019). Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(16), 1958–1974. DOI: 10.1080/15567036.2019.1663306.
[5] Arslan, E., & Aktaş, M. (2020). 4E analysis of infrared-convective dryer powered solar photovoltaic thermal collector. Solar Energy, 208, 46–57. DOI: 10.1016/j.solener.2020.07.071.
[6] Babar, O. A., Tarafdar, A., Malakar, S., Arora, V. K., & Nema, P. K. (2020). Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. Journal of Food Process Engineering, 43(10). DOI: 10.1111/jfpe.13484.
[7] Lingayat, A. B., Chandramohan, V., Raju, V., & Meda, V. (2020). A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights. Applied Energy, 258, 114005. DOI: 10.1016/j.apenergy.2019.114005.
[8] Hao, W., Liu, S., Mi, B., & Lai, Y. (2020). Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature. Energies, 13(2), 350. DOI: 10.3390/en13020350.
[9] Sajadipour, F., Kheiralipour, K., Mirzaee- Ghaleh, E., & Rabani, H. (2022). Assessment of Thermal Behavior of a Flat Plate Water Heater Solar Collector at Different Day Times by Computational Fluid Dynamics Method. Journal of Solar Energy Research, 7(4), 1134-1142. DOI: 10.22059/jser.2022.333698.1227.
[10] Rajaee, M., & Jalali, M. (2023). Construction and Analysis of Smart Solar Bench with the Optimal Angle in Four Central Cities of Iran. Journal of Solar Energy Research, 8(1), 1345-1356. DOI: 10.22059/jser.2023.349600.1261.
[11] Patel, H., & Mishra, N. (2019). Modelling and Analysis of Grid Connected Three-Phase Photovoltaic Inverter. SSRN Electronic Journal. DOI: 10.2139/ssrn.3442520.
[12] Rakshamuthu, S., Jegan, S., Joel Benyameen, J., Selvakumar, V., Anandeeswaran, K., & Iyahraja, S. (2021). Experimental analysis of small size solar dryer with phase change materials for food preservation. Journal of Energy Storage, 33, 102095. DOI: 10.1016/j.est.2020.102095.
[13] Mirzakhani, A., & Pishkar, I. (2023). Finding The Best Configuration of an Off-Grid PV-Wind-Fuel Cell System with Battery and Generator Backup: A Remote House in Iran. Journal of Solar Energy Research, 8(2), 1380-1392. DOI: 10.22059/jser.2023.349781.1259.
[14] Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K., Moses, J., & Anandharamakrishnan, C. (2020). Solar dryers for food applications: Concepts, designs, and recent advances. Solar Energy, 208, 321–344. DOI: 10.1016/j.solener.2020.07.098
[15] Battocchio, C., Bruni, F., Di Nicola, G., Gasperi, T., Iucci, G., Tofani, D., . . . Venditti, I. (2021). Solar Cookers and Dryers: Environmental Sustainability and Nutraceutical Content in Food Processing. Foods, 10(10), 2326. DOI: 10.3390/foods10102326.
[16] Swami, V. M., Autee, A. T., & T R, A. (2018). Experimental analysis of solar fish dryer using phase change material. Journal of Energy Storage, 20, 310–315. DOI: 10.1016/j.est.2018.09.016.
[17] Mathew, A. A., & Thangavel, V. (2021). A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renewable Energy, 179, 1674–1693. DOI: 10.1016/j.renene.2021.07.029.
[18] Cetina-Quiñones, A., López López, J., Ricalde-Cab, L., El Mekaoui, A., San-Pedro, L., & Bassam, A. (2021). Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities: Relative humidity comparative study under winter season in tropical climate with sensible heat storage material. Solar Energy, 224, 58–75. DOI: 10.1016/j.solener.2021.05.040
[19] Tarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Studies in Thermal Engineering, 12, 149–165. DOI: 10.1016/j.csite.2018.04.012.
[20] Goud, M., Reddy, M. V. V., V.P., C., & S., S. (2019). A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Solar Energy, 194, 871–885. DOI: 10.1016/j.solener.2019.11.031.
[21] Azam, M. M., Eltawil, M. A., & Amer, B. M. (2020). Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy, 212, 118764. DOI: 10.1016/j.energy.2020.118764.
[22] Moravej, M., Namdarnia, F., & Partabian, L. (2022). An experimental study of the effect of using Ag-water nanofluid in different concentrations on the performance of circular collectors. Journal of Solar Energy Research, 7(2), 1016-1026. DOI: 10.22059/jser.2022.336571.1236.
[23] Murali, S., Alfiya, P., Aniesrani Delfiya, D., Harikrishnan, S., Kunjulakshmi, S., & Samuel, M. P. (2022). Performance evaluation of PV powered solar tunnel dryer integrated with a mobile alert system for shrimp drying. Solar Energy, 240, 246–257. DOI: j.solener.2022.05.028.
[24] Eltawil, M. A., Azam, M. M., & Alghannam, A. O. (2018). Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy, 116, 594–605. DOI: 10.1016/j.renene.2017.10.007.
[25] Aydin, D., Ezenwali, S. E., Alibar, M. Y., & Chen, X. (2019). Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(16), 1958–1974. DOI: 10.1080/15567036.2019.1663306.
[26] Ezhilvannan, P., Krishnan, S., Hemanth Kumar, B., Janardhan, K., & Ramachandran, S. (2023). Analysis of the Effectiveness of a Two-Stage Three-Phase Grid-Connected Inverter for Photovoltaic Applications. Journal of Solar Energy Research, 8(2), 1471-1483. DOI: 10.22059/jser.2023.357025.1285.
[27] Elahi, E., Khalid, Z., & Zhang, Z. (2022). Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Applied Energy, 309, 118459. DOI: 10.1016/j.apenergy.2021.118459
[28] Shoeibi, S., Kargarsharifabad, H., Mirjalily, S. A. A., & Zargarazad, M. (2021). Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Applied Energy, 304, 117778. DOI: 10.1016/j.apenergy.2021.117778.