[1] Z. W. Khan, H. Minxiao, C. Kai, L. Yang, and A. U. Rehman, (2020). “State of the Art DC-DC Converter Topologies for the Multi-Terminal DC Grid Applications: A Review,” in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 1–7.
                                                                                                                [2] H. Yang and M. Saeedifard, (2017). “A Capacitor Voltage Balancing Strategy With Minimized AC Circulating Current for the DC–DC Modular Multilevel Converter,” IEEE Trans. Ind. Electron, 64(2), 956–965.
                                                                                                                [3] G. P. Adam, I. A. Gowaid, S. J. Finney, D. Holliday, and B. W. Williams, (2016). “Review of dc–dc converters for multiāterminal HVDC transmission networks,” IET Power Electron, 9(2), 281–296.
                                                                                                                [4] L. Park, Y. Jang, S. Cho, and J. Kim, (2017). “Residential Demand Response for Renewable Energy Resources in Smart Grid Systems,” IEEE Trans. Ind. Informatics, 13(6), 3165–3173.
                                                                                                                [5] C. S. Lim and K. J. Lee, (2017). “Nonisolated two-phase bidirectional DC-DC converter with zero-voltage-transition for battery energy storage system,” J. Electr. Eng. Technol, 12(6), 2237–2246.
                                                                                                                [6] S. Liu, X. Liu, and Y.-F. Liu, (2015). “Analysis on feedback interconnections of cascaded DC-DC converter systems,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 5160–5166.
                                                                                                                [7] H. Li et al, (2022). “A Describing Function-Based Stability Analysis Method for Cascaded DC-DC Converters,” IEEE Open J. Ind. Electron. Soc, 484–495.
                                                                                                                [8] N. Mukherjee and D. Strickland, (2015). “Control of Cascaded DC-DC Converter Based Hybrid Battery Energy Storage Systems: Part – I: Stability Issue,” IEEE Trans. Ind. Electron, 63(4), 1–4.
                                                                                                                [9] B. Sri Revathi and M. Prabhakar, (2016). “Non isolated high gain DC-DC converter topologies for PV applications– A comprehensive review,” Renew. Sustain. Energy Rev, 920–933.
                                                                                                                [10] L. Schmitz, D. C. Martins, and R. F. Coelho, (2020). “Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques,” IEEE Trans. Circuits Syst, 67(6), 2140–2151.
                                                                                                                [11] Xiaofeng Zhang, Wei Chen, and Zhengyu Lu, (2008). “Key technologies of digital-current-controlled Bidirectional DC-DC converter in the hybrid electric vehicle,” in 2008 IEEE Power Electronics Specialists Conference, 3104–3109.
                                                                                                                [12] H. S. Lee and J. J. Yun, (2019). “High-Efficiency Bidirectional Buck-Boost Converter for Photovoltaic and Energy Storage Systems in a Smart Grid,” IEEE Transactions on Power Electronics, 34(5), 4316–4328.
                                                                                                                [13] R. Zhu, F. Hoffmann, N. Vazquez, K. Wang, and M. Liserre, (2020). “Asymmetrical Bidirectional DC–DC Converter With Limited Reverse Power Rating in Smart Transformer,” IEEE Trans. Power Electron, 35(7), 6895–6905.
                                                                                                                [14] B. S. Revathi and M. Prabhakar, (2022). “Solar PV Fed DC Microgrid: Applications, Converter Selection, Design and Testing,” IEEE Access, 87227–87240.
                                                                                                                [15] J. C. Rosas-Caro, F. Mancilla-David, J. C. Mayo-Maldonado, J. M. Gonzalez-Lopez, H. L. Torres-Espinosa, and J. E. Valdez-Resendiz, (2013). “A Transformer-less High-Gain Boost Converter With Input Current Ripple Cancelation at a Selectable Duty Cycle,” IEEE Trans. Ind. Electron, 60(10), 4492–4499.
                                                                                                                [16] P. K. Maroti, S. Padmanaban, J. B. Holm-Nielsen, M. Sagar Bhaskar, M. Meraj, and A. Iqbal, (2019). “A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications,” IEEE Access, 89857–89868.
                                                                                                                [17] R. A. Mastromauro, S. Pugliese, D. Ricchiuto, S. Stasi, and M. Liserre, (2015).  “DC Multibus based on a Single-Star Bridge Cells Modular Multilevel Cascade Converter for DC smart grids,” in 2015 International Conference on Clean Electrical Power (ICCEP), 55–60.
                                                                                                                [18] R. Faraji, L. Ding, T. Rahimi, H. Farzanehfard, H. Hafezi, and M. Maghsoudi, (2021). “Efficient Multi-Port Bidirectional Converter With Soft-Switching Capability for Electric Vehicle Applications,” IEEE Access, 107079–107094.
                                                                                                                [19] S. Mukherjee, D. Mukherjee, and D. Kastha, (2019). “Multiport Soft-Switching Bidirectional DC-DC Converter for Hybrid Energy Storage Systems” in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2103–2109.
                                                                                                                [20] M. Sarvi, S. Ahmadi, and S. Abdi. (2015). “A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions,” Prog. Photovoltaics Res, 23(2), 201–214.
                                                                                                                [21] M. a S. Masoum and M. Sarvi, (2005). “A new fuzzy-based maximum power point tracker for photovoltaic applications,” Iran. J. Electr. Electron. Eng, 28–35.
                                                                                                                [22] K. Nanshikar and A. Desai, (2016). “Simulation of P & O Algorithm using Boost Converter,” IJIREEICE, 4(2), 130–135.
                                                                                                                [23] M. Sarvi and A. Azadian, (2021). “A comprehensive review and classified comparison of MPPT algorithms in PV systems,” Energy Syst, 13(2), 281-320.
                                                                                                                [24] M. A. S. Masoum and M. Sarvi, (2008). “Voltage and current based MPPT of solar arrays under variable insolation and temperature conditions,” in 2008 43rd International Universities Power Engineering Conference, 1–5.
                                                                                                                [25]s A. A. de Melo Bento and E. R. Cabral da Silva, (2016). “Dual input single switch DC-DC converter for renewable energy applications,” in 2016 12th IEEE International Conference on Industry Applications, 1–8.
                                                                                                                [26] Y. Hu, W. Xiao, W. Cao, B. Ji, and D. J. Morrow, (2015). “Three-Port DC–DC Converter for Stand-Alone Photovoltaic Systems,” IEEE Trans. Power Electron, 30(6), 3068–3076.
                                                                                                                [27] T. Nouri, S. H. Hossein, E. Babaei, and J. Ebrahimi, (2016). “A non-isolated three-phase high step-up DC–DC converter suitable for renewable energy systems.” Electric Power Systems Research, 140(16), 209-224.
                                                                                                                [28] Ren L, Zhang L, Gong C, (2020). “ESR Estimation Schemes of Output Capacitor for Buck Converter from Capacitor Perspective.” Journal of Electronics, 9(10), 1596-1608.
                                                                                                                [29] P. Wang, P. Ren, X. Lu, W. Wang, and D. Xu, (2021). “Topology Analysis and Power Sharing Control of a Two-Stage Three-Port Hybrid Energy Storage Converter for DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), 647–665.
                                                                                                                [30] Z. N. Jan, (2021). “Microgrid: Innovation, Challenges and Prospects,” Int. J. Res. Appl. Sci. Eng. Technol, 9(10), 484–489.
                                                                                                                [31] P. Prabhakaran and V. Agarwal, (2020). “Novel Four-Port DC–DC Converter for Interfacing Solar PV–Fuel Cell Hybrid Sources with Low-Voltage Bipolar DC Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron, 8(2), 1330–1340.