[1] Navesi, R. B., Nazarpour, D., Ghanizadeh, R., & Alemi, P. (2021). Switchable capacitor bank coordination and dynamic network reconfiguration for improving operation of distribution network integrated with renewable energy resources. Journal of modern power systems and clean energy, 10(3), 637-646.
[2] Srivastava, A., & Seshadrinath, J. (2022). A New Nine Level Highly Efficient Boost Inverter for Transformerless Grid Connected PV Application. IEEE Journal of Emerging and Selected Topics in Power Electronics.
[3] Manoharan, P., Subramaniam, U., Babu, T. S., Padmanaban, S., Holm-Nielsen, J. B., Mitolo, M., & Ravichandran, S. (2020). Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Systems Journal, 15(2), 3024-3035.
[4] Bhattacharyya, S., Samanta, S., & Mishra, S. (2020). Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms. IEEE Transactions on Sustainable Energy, 12(1), 293-302.
[5] Rasekh, N., & Hosseinpour, M. (2020). Adequate tuning of LCL filter for robust performance of converter side current feedback control of grid connected modified–Y-source inverter. International Journal of Industrial Electronics Control and Optimization, 3(3), 365-378.
[6] Huang, M., Zhang, Z., Wu, W., & Yao, Z. (2022). An improved three-level cascaded control for LCL-filtered grid-connected inverter in complex grid impedance condition. IEEE Access, 10, 65485-65495.
[7] Bonaldo, J. P., de Arimatéia Olímpio Filho, J., dos Santos Alonso, A. M., Paredes, H. K. M., & Marafão, F. P. (2021). Modeling and control of a single-phase grid-connected inverter with lcl filter. IEEE Latin America Transactions, 19(02), 250-259.
[8] Mazaheri, A., Barati, F., & Jamil, M. (2019). A Simulation-Aided LCL Filter Design for Grid-Interactive Three-Phase Photovoltaic Inverters. Journal of Solar Energy Research, 4(4), 229-236.
[9] Ding, X., Xue, R., Zheng, T., Kong, F., & Chen, Y. (2022). Robust Delay Compensation Strategy for LCL-Type Grid-Connected Inverter in Weak Grid. IEEE Access, 10, 67639-67652.
[10] Nazib, A. A., Holmes, D. G., & McGrath, B. P. (2021). Self-synchronizing stationary frame inverter-current-feedback control for LCL grid-connected inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(2), 1434-1446.
[11] Khan, D., Zhu, K., Hu, P., Waseem, M., Ahmed, E. M., & Lin, Z. (2023). Active damping of LCL-Filtered Grid-Connected inverter based on parallel feedforward compensation strategy. Ain Shams Engineering Journal, 14(3), 101902.
[12] Hosseinpour, M., & Rasekh, N. (2019). A single-phase grid-tied PV based trans-z-source inverter utilizing LCL filter and grid side current active damping. Journal of Energy Management and Technology, 3(3), 67-77.
[13] Yao, W., Yang, Y., Zhang, X., Blaabjerg, F., & Loh, P. C. (2017). Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Transactions on Power Electronics, 32(3), 2360-2375.
[14] Kouchaki, A., & Nymand, M. (2018). Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers. IEEE Transactions on power electronics, 33(4), 3012-3022.
[15] Bao, C., Ruan, X., Wang, X., Li, W., Pan, D., & Weng, K. (2014). Step-by-step controller design for LCL-type grid-connected inverter with capacitor–current-feedback active-damping. IEEE Transactions on Power Electronics, 29(3), 1239-1253.
[16] Xin, Z., Loh, P. C., Wang, X., Blaabjerg, F., & Tang, Y. (2016). Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping. IEEE Transactions on Power Electronics, 31(5), 3612-3625.
[17] Huang, M., Wang, X., Loh, P. C., & Blaabjerg, F. (2015). Active damping of LLCL-filter resonance based on LC-trap voltage or current feedback. IEEE Transactions on Power Electronics, 31(3), 2337-2346.
[18] Yang, X., Wu, G., Meng, Z., Wang, Y., Ji, L., Xue, H., & Bian, X. (2021). An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation. IET Power Electronics, 14(15), 2466-2477.
[19] Zhong, G. X., Wang, Z., Zhou, J., Li, J., & Su, Q. (2022). Coordinated control of active disturbance rejection and grid voltage feedforward for grid‐connected inverters. IET Power Electronics.
[20] Hosseinpour, M., Kholousi, A., & Poulad, A. (2022). A robust controller design procedure for LCL‐type grid‐tied proton exchange membrane fuel cell system in harmonics‐polluted network. Energy Science & Engineering, 10(10), 3798-3818.
[21] He, Y., Wang, X., Ruan, X., Pan, D., & Qin, K. (2021). Hybrid active damping combining capacitor current feedback and point of common coupling voltage feedforward for LCL-type grid-connected inverter. IEEE Transactions on Power Electronics, 36(2), 2373-2383.
[22] Li, X., Wu, X., Geng, Y., Yuan, X., Xia, C., & Zhang, X. (2014). Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Transactions on Power Electronics, 30(9), 5247-5259.
[23] Pan, D., Ruan, X., Bao, C., Li, W., & Wang, X. (2014). Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Transactions on Power Electronics, 29(7), 3414-3427.
[24] Wang, X., Blaabjerg, F., & Loh, P. C. (2016). Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters. IEEE Transactions on Power Electronics, 31(1), 213-223.
[25] Wang, X., Blaabjerg, F., & Loh, P. C. (2015). Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation. IEEE Transactions on Power Electronics, 30(9), 4726-4737.
[26] Li, X., Wu, X., Geng, Y., Yuan, X., Xia, C., & Zhang, X. (2015). Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Transactions on Power Electronics, 30(9), 5247-5259.
[27] Chen, C., Xiong, J., Wan, Z., Lei, J., & Zhang, K. (2017). A time delay compensation method based on area equivalence for active damping of an LCL-type converter. IEEE Transactions on Power Electronics, 32(1), 762-772.
[28] Pan, D., Ruan, X., Bao, C., Li, W., & Wang, X. (2015). Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Transactions on Industrial Electronics, 62(3), 1537-1547.
[29] Huang, Q., & Rajashekara, K. (2017, March). Virtual RLC active damping for grid-connected inverters with LCL filters. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 424-429).
[30] Zhao, T., Li, J., & Gao, N. (2022). Capacitor-Current-Feedback With Improved Delay Compensation for LCL-Type Grid-Connected Inverter to Achieve High Robustness in Weak Grid. IEEE Access, 10, 127956-127968.
[31] Hosseinpour, M., Asad, M., & Rasekh, N. (2021). A Step-by-Step Design Procedure of a Robust Control Design for Grid-Connected Inverter by LCL Filter in a Weak and Harmonically Distorted Grid. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(3), 843-859.
[32] Rasekh, N., Hosseinpour, M., Dejamkhooy, A., & Akbarimajd, A. (2021). Robust power conditioning system based on LCL-type quasi-Y-source inverter for grid connection of photovoltaic arrays. International Journal of Automation and Control, 15(6), 692-709.
[33] Li, X., Fang, J., Tang, Y., Wu, X., & Geng, Y. (2018). Capacitor-voltage feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems. IEEE Transactions on Power Electronics, 33(1), 749-764.
[34] J Yin, J., Duan, S., & Liu, B. (2013). Stability analysis of grid-connected inverter with LCL filter adopting a digital single-loop controller with inherent damping characteristic. IEEE Transactions on Industrial Informatics, 9(2), 1104-1112.
[35] Holmes, D. G., Lipo, T. A., Mcgrath, B. P., & Kong, W. Y. (2009). Optimized design of stationary frame three phase AC current regulators. IEEE transactions on power electronics, 24(11), 2417-2426.
[36] Pan, D., Ruan, X., Wang, X., Yu, H., & Xing, Z. (2017). Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model. IEEE Transactions on Power Electronics, 32(6), 4395-4410.
[37] Anowar, M. H., & Roy, P. (2019, February). A modified incremental conductance based photovoltaic MPPT charge controller. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-5).
[38] Saidi, A., & Benachaiba, C. (2016, November). Comparison of IC and P&O algorithms in MPPT for grid connected PV module. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC) (pp. 213-218).
[39] Faiz, M. T., Khan, M. M., Jianming, X., Ali, M., Habib, S., Hashmi, K., & Tang, H. (2019). Capacitor voltage damping based on parallel feedforward compensation method for lcl-filter grid-connected inverter. IEEE Transactions on Industry Applications, 56(1), 837-849.
[40] Bimarta, R., & Kim, K. H. (2020). A robust frequency-adaptive current control of a grid-connected inverter based on LMI-LQR under polytopic uncertainties. IEEE Access, 8, 28756-28773.
[41] Padmanaban, S., Priyadarshi, N., Bhaskar, M. S., Holm-Nielsen, J. B., Hossain, E., & Azam, F. (2019). A hybrid photovoltaic-fuel cell for grid integration with jaya-based maximum power point tracking: experimental performance evaluation. IEEE Access, 7, 82978-82990.
[42] Kim, Y. J., & Kim, H. (2019). Optimal design of LCL filter in grid‐connected inverters. IET Power Electronics, 12(7), 1774-1782.
[43] Dragičević, T., Zheng, C., Rodriguez, J., & Blaabjerg, F. (2019). Robust quasi-predictive control of $ LCL $-filtered grid converters. IEEE Transactions on Power Electronics, 35(2), 1934-1946.