[1] Abdollahi Haghghi, M., Pesteei, S. M., & Chitsaz, A. (2018). Thermodynamic analysis of using parabolic trough solar collectors for power and heating generation at the engineering faculty of Urmia University in Iran. Journal of Solar Energy Research, 3(3), 187-200.
[2] Athari, H., Abdollahi Haghghi, M., Delpisheh, M., & Rahimi, Y. (2021). Assessment of wet compression integrated with air-film blade cooling in gas turbine power plants. Journal of Solar Energy Research, 6(4), 913-922.
[3] Cao, Y., Dhahad, H. A., Togun, H., Haghghi, M. A., Athari, H., & Mohamed, A. M. (2021). Exergetic and economic assessments and multi-objective optimization of a modified solar-powered CCHP system with thermal energy storage. Journal of Building Engineering, 43, 102702.
[4] Haghghi, M. A., & Pesteei, S. M. (2017). Energy and exergy analysis of flat plate solar collector for three working fluids, under the same conditions. Progress in Solar Energy and Engineering Systems, 1(1), 1-9.
[5] Tyagi, H., Agarwal, A. K., Chakraborty, P. R., & Powar, S. (2019). Introduction to advances in solar energy research. In Advances in Solar Energy Research (pp. 3-11). Springer, Singapore.
[6] Abdollahi Haghghi, M., Pesteei, S. M., & Chitsaz Khoyi, A. (2019). Exergoeconomic analysis of a heating and power generation solar system for using at the engineering faculty of Urmia University. Modares Mechanical Engineering, 19(2), 415-427.
[7] Haghghi, M. A., Holagh, S. G., Pesteei, S. M., Chitsaz, A., & Talati, F. (2019). On the performance, economic, and environmental assessment of integrating a solar-based heating system with conventional heating equipment; a case study. Thermal Science and Engineering Progress, 13, 100392.
[8] Ghaffarzadeh, N., & Faramarzi, H. (2022). Optimal Solar plant placement using holomorphic embedded power Flow Considering the clustering technique in uncertainty analysis. Journal of Solar Energy Research, 7(1), 997-1007.
[9] Mbachu, V. M., Muogbo, A. G., Ezeanaka, O. S., Ejichukwu, E. O., & Ekwunife, T. D. (2022). An Economic Based Analysis of Fossil Fuel Powered Generator and Solar Photovoltaic System as Complementary Electricity Source for a University Student’s Room. Journal of Solar Energy Research, 7(4), 1159-1173.
[10] Sezer, N., Biçer, Y., & Koç, M. (2019). Design and analysis of an integrated concentrated solar and wind energy system with storage. International Journal of Energy Research, 43(8), 3263-3283.
[11] Zoghi, M., Habibi, H., Choubari, A. Y., & Ehyaei, M. A. (2021). Exergoeconomic and environmental analyses of a novel multi-generation system including five subsystems for efficient waste heat recovery of a regenerative gas turbine cycle with hybridization of solar power tower and biomass gasifier. Energy Conversion and Management, 228, 113702.
[12] Yuksel, Y. E., Ozturk, M., & Dincer, I. (2019). Energetic and exergetic assessments of a novel solar power tower based multigeneration system with hydrogen production and liquefaction. International Journal of Hydrogen Energy, 44(26), 13071-13084.
[13] Colakoglu, M., & Durmayaz, A. (2022). Energy, exergy and economic analyses and multiobjective optimization of a novel solar multi-generation system for production of green hydrogen and other utilities. International Journal of Hydrogen Energy.
[14] Nedaei, N., Azizi, S., & Farshi, L. G. (2022). Performance assessment and multi-objective optimization of a multi-generation system based on solar tower power: A case study in Dubai, UAE. Process Safety and Environmental Protection, 161, 295-315.
[15] Wang, X., Liu, Q., Lei, J., Han, W., & Jin, H. (2018). Investigation of thermodynamic performances for two-stage recompression supercritical CO2 Brayton cycle with high temperature thermal energy storage system. Energy conversion and management, 165, 477-487.
[16] Liang, Y., Chen, J., Luo, X., Chen, J., Yang, Z., & Chen, Y. (2020). Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system. Journal of Cleaner Production, 266, 121927.
[17] Sachdeva, J., & Singh, O. (2019). Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power. Renewable Energy, 139, 765-780.
[18] Sadeghi, S., Ghandehariun, S., & Rezaie, B. (2021). Energy and exergy analyses of a solar-based multi-generation energy plant integrated with heat recovery and thermal energy storage systems. Applied Thermal Engineering, 188, 116629.
[19] Keshavarzzadeh, A. H., Ahmadi, P., & Rosen, M. A. (2020). Technoeconomic and environmental optimization of a solar tower integrated energy system for freshwater production. Journal of Cleaner Production, 270, 121760.
[20] Khatoon, S., & Kim, M. H. (2020). Performance analysis of carbon dioxide based combined power cycle for concentrating solar power. Energy Conversion and Management, 205, 112416.
[21] Yang, J., Yang, Z., & Duan, Y. (2020). Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system. Energy, 201, 117676.
[22] Mohammadi, K., McGowan, J. G., & Saghafifar, M. (2019). Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I-hybridization with a solar power tower system. Energy Conversion and Management, 185, 898-919.
[23] Chitsaz, A., Haghghi, M. A., & Hosseinpour, J. (2019). Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME). Energy Conversion and Management, 186, 487-499.
[24] Haghghi, M. A., Holagh, S. G., Chitsaz, A., & Parham, K. (2019). Thermodynamic assessment of a novel multi-generation solid oxide fuel cell-based system for production of electrical power, cooling, fresh water, and hydrogen. Energy Conversion and Management, 197, 111895.
[25] Cao, Y., Dhahad, H. A., Sun, Y. L., Haghghi, M. A., Delpisheh, M., Athari, H., & Farouk, N. (2021). The role of input gas species to the cathode in the oxygen-ion conducting and proton conducting solid oxide fuel cells and their applications: Comparative 4E analysis. International Journal of Hydrogen Energy, 46(37), 19569-19589.
[26] Wang, L., Chen, M., Küngas, R., Lin, T. E., Diethelm, S., & Maréchal, F. (2019). Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renewable and Sustainable Energy Reviews, 110, 174-187.
[27] Iora, P., & Chiesa, P. (2009). High efficiency process for the production of pure oxygen based on solid oxide fuel cell–solid oxide electrolyzer technology. Journal of Power Sources, 190(2), 408-416.
[28] Delpisheh, M., Haghghi, M. A., Mehrpooya, M., Chitsaz, A., & Athari, H. (2021). Design and financial parametric assessment and optimization of a novel solar-driven freshwater and hydrogen cogeneration system with thermal energy storage. Sustainable Energy Technologies and Assessments, 45, 101096.
[29] Virkar, A. V. (2010). Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. International Journal of Hydrogen Energy, 35(18), 9527-9543.
[30] Holagh, S. G., Haghghi, M. A., & Chitsaz, A. (2022). Which methane-fueled fuel cell is of superior performance in CCHP applications; solid oxide or molten carbonate?. Fuel, 312, 122936.
[31] Stempien, J. P., Sun, Q., & Chan, S. H. (2013). Solid Oxide Electrolyzer Cell Modeling: A Review. Journal of Power Technologies, 93(4).
[32] Mohammadi, A., & Mehrpooya, M. (2018). Techno-economic analysis of hydrogen production by solid oxide electrolyzer coupled with dish collector. Energy Conversion and Management, 173, 167-178.
[33] Wang, F., Wang, L., Ou, Y., Lei, X., Yuan, J., Liu, X., & Zhu, Y. (2021). Thermodynamic analysis of solid oxide electrolyzer integration with engine waste heat recovery for hydrogen production. Case Studies in Thermal Engineering, 27, 101240.
[34] Hjeij, D., Biçer, Y., & Koç, M. (2022). Thermodynamic analysis of a multigeneration system using solid oxide cells for renewable power-to-X conversion. International Journal of Hydrogen Energy.
[35] Xu, Y. P., Lin, Z. H., Ma, T. X., She, C., Xing, S. M., Qi, L. Y., ... & Pan, J. (2022). Optimization of a biomass-driven Rankine cycle integrated with multi-effect desalination, and solid oxide electrolyzer for power, hydrogen, and freshwater production. Desalination, 525, 115486.
[36] Alirahmi, S. M., Assareh, E., Pourghassab, N. N., Delpisheh, M., Barelli, L., & Baldinelli, A. (2022). Green hydrogen & electricity production via geothermal-driven multi-generation system: Thermodynamic modeling and optimization. Fuel, 308, 122049.
[37] Xu, C., Wang, Z., Li, X., & Sun, F. (2011). Energy and exergy analysis of solar power tower plants. Applied Thermal Engineering, 31(17-18), 3904-3913.
[38] Linares, J. I., Montes, M. J., Cantizano, A., & Sánchez, C. (2020). A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants. Applied Energy, 263, 114644.
[39] AlZahrani, A. A., & Dincer, I. (2016). Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production. international journal of hydrogen energy, 41(19), 8042-8056.
[40] Cao, Y., Dhahad, H. A., Togun, H., Haghghi, M. A., Anqi, A. E., Farouk, N., & Rosen, M. A. (2021). Seasonal design and multi-objective optimization of a novel biogas-fueled cogeneration application. International Journal of Hydrogen Energy, 46(42), 21822-21843.
[41] Cao, Y., Haghghi, M. A., Shamsaiee, M., Athari, H., Ghaemi, M., & Rosen, M. A. (2020). Evaluation and optimization of a novel geothermal-driven hydrogen production system using an electrolyser fed by a two-stage organic Rankine cycle with different working fluids. Journal of Energy Storage, 32, 101766.
[42] Haghghi, M. A., Mohammadi, Z., Pesteei, S. M., Chitsaz, A., & Parham, K. (2020). Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study. Energy, 192, 116594.
[43] Habibollahzade, A., Gholamian, E., Houshfar, E., & Behzadi, A. (2018). Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer. Energy conversion and management, 171, 1116-1133.
[44] Delpisheh, M., Haghghi, M. A., Athari, H., & Mehrpooya, M. (2021). Desalinated water and hydrogen generation from seawater via a desalination unit and a low temperature electrolysis using a novel solar-based setup. international journal of hydrogen energy, 46(10), 7211-7229.
[45] Athari, H., Kiasatmanesh, F., Haghghi, M. A., Teymourzadeh, F., Yagoublou, H., & Delpisheh, M. (2022). Investigation of an auxiliary option to meet local energy demand via an innovative small-scale geothermal-driven system; a seasonal analysis. Journal of Building Engineering, 50, 103902.
[46] Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons.
[47] Bejan, A., Tsatsaronis, G., & Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons.