Advancements in Solar Still Water Desalination: A Comprehensive Review of Design Enhancements and Performance Optimization

Document Type : Review Article

Authors

1 Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

2 Department of Industrial & Production Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

3 Department of Computer Science & Engineering, American International University - Bangladesh (AIUB), Dhaka, Bangladesh.

10.22059/jser.2025.382301.1464

Abstract

Freshwater scarcity affects over 40% of the global population, demanding sustainable solutions. Solar stills (SS) present an eco-friendly desalination method, utilizing solar energy for freshwater production. This comprehensive review critically examines design enhancements and operational strategies to optimize SS performance. Notable advancements include the integration of phase change materials (PCMs), nanofluids, and photovoltaic (PV) panels, alongside innovations in fin designs, wick materials, and reflectors. Key findings reveal that incorporating PCMs like paraffin wax can enhance productivity by up to 87.4%, while CuO nanofluids and rotating wick systems achieve a remarkable 350% improvement in freshwater yield. Moreover, PV-integrated SS systems amplify water and electricity generation, with efficiency gains up to sixfold compared to conventional designs. Novel configurations, such as pin-finned absorbers paired with condensers, demonstrate a 76.5% boost in output, while optimal water depths (0.5 cm) yield 4.5 L/m² daily. The study highlights the dual benefits of integrating renewable technologies, balancing sustainability and scalability. It also addresses challenges like cost-effectiveness and environmental impacts, proposing multidisciplinary approaches involving IoT and advanced computational tools. By identifying actionable strategies, this work establishes a pathway for advancing SS technology as a global cornerstone for sustainable freshwater production.

Keywords

  1. Shannon, M.A., P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, and A.M. Mayes. (2008). Science and technology for water purification in the coming decades. Nature,  452(7185),  301-310. DOI: https://doi.org/10.1038/nature06599
  2. El-Dessouky, H.T., & Ettouney, H. M. (2002). Introduction. In Fundamentals of Salt Water Desalination. (p. 1-17). Elsevier. DOI: https://doi.org/10.1016/B978-044450810-2/50003-8
  3. Essa, F.A., A. Abdullah, H.S. Majdi, A. Basem, H.A. Dhahad, Z.M. Omara, S.A. Mohammed, W.H. Alawee, A.A. Ezzi, and T. Yusaf. (2022). Parameters affecting the efficiency of solar stills—recent review. Sustainability,  14(17),  10668. DOI: https://doi.org/10.3390/su141710668
  4. Tech, G.W. (2024). Addressing Water Insecurity in Southeast Asia: Causes & Solutions. Retrieved May 19, 2024,  from: https://genesiswatertech.com/blog-post/addressing-water-insecurity-in-southeast-asia-causes-and-solutions/.
  5. UNICEF. (2023). South Asia has highest number of children exposed to severe water scarcity - UNICEF. Retrieved May 19, 2024,  from: https://www.unicef.org/rosa/press-releases/south-asia-has-highest-number-children-exposed-severe-water-scarcity-unicef.
  6. Bank, A.D. (2015). Water: 12 Things to Know. Retrieved May 19, 2024,  from: https://www.adb.org/news/features/12things-know-aboutwater#:~:text=Over%2075%25%20of%20Asia%20is,facing%20an%20imminent%20water%20crisis.&text=The%20gap%20between%20water%20demand,population%20faces%20a%20water%20crisis.
  7. Agency, E.E. (2009). Water resources across Europe — confronting water scarcity and drought. Retrieved May 19, 2024,  from: https://www.eea.europa.eu/publications/water-resources-across-europe/at_download/file.
  8. Mekonnen, M.M. and A.Y. Hoekstra. (2016). Four billion people facing severe water scarcity. Science advances,  2(2),  e1500323. DOI: https://doi.org/10.1126/sciadv.1500323
  9. Council, W.W. (2004). Water Problems in Latin America. Retrieved May 19, 2024,  from: https://www.worldwatercouncil.org/fileadmin/wwc/News/WWC_News/water_problems_22.03.04.pdf.
  10. MAKINO, A.W.M. (2022). The Latin American climate crisis is also a water crisis. How do we move forward? Retrieved May 19, 2024,  from: https://blogs.worldbank.org/en/latinamerica/latin-american-climate-crisis-also-water-crisis-how-do-we-move-forward.
  11. Hasan, E., A. Tarhule, Y. Hong, and B. Moore III. (2019). Assessment of physical water scarcity in Africa using GRACE and TRMM satellite data. Remote Sensing,  11(8),  904. DOI: https://doi.org/10.3390/rs11080904
  12. University, A.N. (2022). Remote Australians lack access to quality drinking water. Retrieved May 22, 2024,  from: https://www.anu.edu.au/news/all-news/remote-australians-lack-access-to-quality-drinking-water#:~:text=Australians%20in%20more%20than%20400,Australian%20National%20University%20(ANU).
  13. Kucera, J. (2014). Introduction to Desalination. In Desalination: water from water. (p. 1-37). John Wiley & Sons. DOI: https://doi.org/10.1002/9781118904855.ch1
  14. Chaichan, M.T., H.A. Kazem, A.H. Al-Waeli, W.H. Elawee, M.A. Fayad, and K. Sopian. (2024). Advanced techniques for enhancing solar distiller productivity: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,  46(1),  736-772. DOI: https://doi.org/10.1080/15567036.2023.2289559
  15. Bhuiya, K.M.S., M.M.R. Rony, S. Ahmed, S.B. Udoy, N.I. Masuk, A.C. Diganta, M.H. Hasan, M. Islam, M.A. Islam, and A. Shariar. (2022, December). A Case Study on Hybrid Power Systems Using HOMER Pro: Design, Optimization and Comparison of Different Configurations and Proposing the Best Configuration for a University Campus. (Paper presented at the  5th International Conference on Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh)
  16. Azad, A.A.S., Z.T. Oishi, M.A. Haque, P. Das, S.A. Udoy, and K.M.S. Bhuiya. (2024). An integrated framework for assessing renewable-energy supply chains using multicriteria decision-making: a study on Bangladesh. Clean Energy,  8(3),  1-19. DOI: https://doi.org/10.1093/ce/zkae019
  17. Shatat, M., M. Worall, and S. Riffat. (2013). Opportunities for solar water desalination worldwide. Sustainable cities and society,  9,  67-80. DOI: https://doi.org/10.1016/j.scs.2013.03.004
  18. Omara, A.A., A.A. Abuelnuor, H.A. Mohammed, and M. Khiadani. (2020). Phase change materials (PCMs) for improving solar still productivity: a review. Journal of Thermal Analysis and Calorimetry,  139(3),  1585-1617. DOI: https://doi.org/10.1007/s10973-019-08645-3
  19. Kabeel, A., M.H. Hamed, Z. Omara, and S. Sharshir. (2013). Water desalination using a humidification-dehumidification technique—a detailed review. DOI: http://dx.doi.org/10.4236/nr.2013.43036
  20. Buros, O.K. (2000). The ABCs of Desalting. (Denver:  International Desalination Association)
  21. Hashemian, N. and A. Noorpoor. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management,  195,  788-797. DOI: https://doi.org/10.1016/j.enconman.2019.05.039
  22. Sakthivadivel, D., K. Balaji, D.D.W. Rufuss, S. Iniyan, and L. Suganthi. (2021). Solar energy technologies: principles and applications. In Renewable-energy-driven future. (p. 3-42). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820539-6.00001-7
  23. Asadi, R.Z., F. Suja, and M.H. Ruslan. (2013). The application of a solar still in domestic and industrial wastewater treatment. Solar energy,  93,  63-71. DOI: https://doi.org/10.1016/j.solener.2013.03.024
  24. Abdelgaied, M., K. Harby, and A. Eisa. (2021). Performance improvement of modified tubular solar still by employing vertical and inclined pin fins and external condenser: an experimental study. Environmental Science and Pollution Research,  28,  13504-13514. DOI: https://doi.org/10.1007/s11356-020-11585-3
  25. Alaian, W., E. Elnegiry, and A.M. Hamed. (2016). Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination,  379,  10-15. DOI: https://doi.org/10.1016/j.desal.2015.10.010
  26. Rabhi, K., R. Nciri, F. Nasri, C. Ali, and H.B. Bacha. (2017). Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser. Desalination,  416,  86-93. DOI: https://doi.org/10.1016/j.desal.2017.04.023
  27. Mohaisen, H., J. Esfahani, and M.B. Ayani. (2021). Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy,  168,  170-180. DOI: https://doi.org/10.1016/j.renene.2020.12.056
  28. Alawee, W.H., H.A. Dhahad, and T.A. Mohammad. (2021). Enhancement of solar still productivity using absorber plate with inclined perforated rectangular fins: experimental study with economic analysis. Desalination and Water Treatment,  213,  53-63. DOI: https://doi.org/10.5004/dwt.2021.26730
  29. Sathyamurthy, R., A.E. Kabeel, A. Chamkha, H.A. Kumar, H. Venkateswaran, A.M. Manokar, R. Bharathwaaj, and S. Vasanthaseelan. (2022). Exergy and energy analysis of a tubular solar still with and without fins: a comparative theoretical and experimental approach. Environmental Science and Pollution Research,  29(5),  6612-6621. DOI: https://doi.org/10.1007/s11356-021-16065-w
  30. Abdelgaied, M., Y. Zakaria, A. Kabeel, and F.A. Essa. (2021). Improving the tubular solar still performance using square and circular hollow fins with phase change materials. Journal of Energy Storage,  38,  102564. DOI: https://doi.org/10.1016/j.est.2021.102564
  31. Suraparaju, S.K. and S.K. Natarajan. (2021). Experimental investigation of single-basin solar still using solid staggered fins inserted in paraffin wax PCM bed for enhancing productivity. Environmental Science and Pollution Research,  28(16),  20330-20343. DOI: https://doi.org/10.1007/s11356-020-11980-w
  32. Panchal, H. and R. Sathyamurthy. (2020). Experimental analysis of single-basin solar still with porous fins. International Journal of Ambient Energy,  41(5),  563-569. DOI: https://doi.org/10.1080/01430750.2017.1360206
  33. Taghvaei, H., H. Taghvaei, K. Jafarpur, M.K. Estahbanati, M. Feilizadeh, M. Feilizadeh, and A.S. Ardekani. (2014). A thorough investigation of the effects of water depth on the performance of active solar stills. Desalination,  347,  77-85. DOI: https://doi.org/10.1016/j.desal.2014.05.038
  34. Kabeel, A., S.W. Sharshir, G.B. Abdelaziz, M. Halim, and A. Swidan. (2019). Improving performance of tubular solar still by controlling the water depth and cover cooling. Journal of cleaner production,  233,  848-856. DOI: https://doi.org/10.1016/j.jclepro.2019.06.104
  35. Manokar, A.M., Y. Taamneh, D.P. Winston, P. Vijayabalan, D. Balaji, R. Sathyamurthy, S.P. Sundar, and D. Mageshbabu. (2020). Effect of water depth and insulation on the productivity of an acrylic pyramid solar still–An experimental study. Groundwater for Sustainable Development,  10,  100319. DOI: https://doi.org/10.1016/j.gsd.2019.100319
  36. Kumar, P.N., A.M. Manokar, B. Madhu, A. Kabeel, T. Arunkumar, H. Panchal, and R. Sathyamurthy. (2017). Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundwater for Sustainable Development,  5,  229-234. DOI: https://doi.org/10.1016/j.gsd.2017.08.003
  37. Jahanpanah, M., S.J. Sadatinejad, A. Kasaeian, M.H. Jahangir, and H. Sarrafha. (2021). Experimental investigation of the effects of low-temperature phase change material on single-slope solar still. Desalination,  499,  114799. DOI: https://doi.org/10.1016/j.desal.2020.114799
  38. Katekar, V.P. and S.S. Deshmukh. (2020). A review of the use of phase change materials on performance of solar stills. Journal of Energy Storage,  30,  101398. DOI: https://doi.org/10.1016/j.est.2020.101398
  39. Kabeel, A. and M. Abdelgaied. (2016). Improving the performance of solar still by using PCM as a thermal storage medium under Egyptian conditions. Desalination,  383,  22-28. DOI: https://doi.org/10.1016/j.desal.2016.01.006
  40. Kumar, P.M., D. Sudarvizhi, K. Prakash, A. Anupradeepa, S.B. Raj, S. Shanmathi, K. Sumithra, and S. Surya. (2021). Investigating a single slope solar still with a nano-phase change material. Materials Today: Proceedings,  45,  7922-7925. DOI: https://doi.org/10.1016/j.matpr.2020.12.804
  41. Rufuss, D.D.W., L. Suganthi, S. Iniyan, and P. Davies. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production,  192,  9-29. DOI: https://doi.org/10.1016/j.jclepro.2018.04.201
  42. Kabeel, A., M.A. Teamah, M. Abdelgaied, and G.B.A. Aziz. (2017). Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. Journal of Cleaner Production,  161,  881-887. DOI: https://doi.org/10.1016/j.jclepro.2017.05.195
  43. Sharshir, S., G. Peng, L. Wu, F. Essa, A. Kabeel, and N. Yang. (2017). The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied energy,  191,  358-366. DOI: https://doi.org/10.1016/j.apenergy.2017.01.067
  44. Chaichan, M.T. and H.A. Kazem. (2018). Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy,  164,  370-381. DOI: https://doi.org/10.1016/j.solener.2018.02.049
  45. Cheng, W.-L., Y.-K. Huo, and Y.-L. Nian. (2019). Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination,  455,  89-99. DOI: https://doi.org/10.1016/j.desal.2019.01.007
  46. Yousef, M.S. and H. Hassan. (2019). Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy conversion and management,  179,  349-361. DOI: https://doi.org/10.1016/j.enconman.2018.10.078
  47. Kumar, P.M., P. Chauhan, A.K. Sharma, M.L. Rinawa, A. Rahul, M. Srinivas, and A. Tamilarasan. (2022). Performance study on solar still using nano disbanded phase change material (NDPCM). Materials Today: Proceedings,  62,  1894-1897. DOI: https://doi.org/10.1016/j.matpr.2022.01.050
  48. Shoeibi, S., H. Kargarsharifabad, and N. Rahbar. (2021). Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. Journal of Energy Storage,  42,  103061. DOI: https://doi.org/10.1016/j.est.2021.103061
  49. Abdelgaied, M., M.E.H. Attia, A. Kabeel, and M.E. Zayed. (2022). Improving the thermo-economic performance of hemispherical solar distiller using copper oxide nanofluids and phase change materials: Experimental and theoretical investigation. Solar Energy Materials and Solar Cells,  238,  111596. DOI: https://doi.org/10.1016/j.solmat.2022.111596
  50. Iqbal, A., M.S. Mahmoud, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, H. Alawadhi, and A. Olabi. (2021). Evaluation of the nanofluid-assisted desalination through solar stills in the last decade. Journal of Environmental Management,  277,  111415. DOI: https://doi.org/10.1016/j.jenvman.2020.111415
  51. Nagaraju, V., G. Murali, M. Sankeerthana, and M. Murugan. (2021). A review on recent developments of solar stills to enhance productivity using nanoparticles and nano-PCM. International Journal of Green Energy,  1956935. DOI: https://doi.org/10.1080/15435075.2021.1956935
  52. Thakur, V.K., M. Gaur, A. Dhamneya, and M. Sagar. (2021). Performance analysis of passive solar still with and without nanoparticles. Materials Today: Proceedings,  47,  6309-6316. DOI: https://doi.org/10.1016/j.matpr.2021.05.539
  53. Katekar, V.P., A.B. Rao, and V.R. Sardeshpande. (2024). Performance enhancement of solar distillation system with hemispherical projections and low-cost coating on absorber plate. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems,  23977914241259114. DOI: https://doi.org/10.1177/23977914241259114
  54. Elango, T., A. Kannan, and K.K. Murugavel. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination,  360,  45-51. DOI: https://doi.org/10.1016/j.desal.2015.01.004
  55. Sharshir, S.W., G. Peng, L. Wu, N. Yang, F. Essa, A. Elsheikh, S.I. Mohamed, and A. Kabeel. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Applied thermal engineering,  113,  684-693. DOI: https://doi.org/10.1016/j.applthermaleng.2016.11.085
  56. Shoeibi, S., H. Kargarsharifabad, N. Rahbar, G. Ahmadi, and M.R. Safaei. (2022). Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis. Sustainable Energy Technologies and Assessments,  49,  101728. DOI: https://doi.org/10.1016/j.seta.2021.101728
  57. Rabbi, H.M.F. and A.Z. Sahin. (2021). Performance improvement of solar still by using hybrid nanofluids. Journal of Thermal Analysis and Calorimetry,  143(2),  1345-1360. DOI: https://doi.org/10.1007/s10973-020-10155-6
  58. Bellila, A., M.E.H. Attia, A. Kabeel, M. Abdelgaied, K. Harby, and J. Soli. (2021). Productivity enhancement of hemispherical solar still using Al2O3-water-based nanofluid and cooling the glass cover. Applied Nanoscience,  11(4),  1127-1139. DOI: https://doi.org/10.1007/s13204-021-01677-y
  59. Jathar, L.D. and S. Ganesan. (2021). Assessing the performance of concave type stepped solar still with nanoparticles and condensing cover cooling arrangement: an experimental approach. Groundwater for Sustainable Development,  12,  100539. DOI: https://doi.org/10.1016/j.gsd.2020.100539
  60. Ghandourah, E.I., A. Sangeetha, S. Shanmugan, M.E. Zayed, E.B. Moustafa, A. Tounsi, and A.H. Elsheikh. (2022). Performance assessment of a novel solar distiller with a double slope basin covered by coated wick with lanthanum cobalt oxide nanoparticles. Case Studies in Thermal Engineering,  32,  101859. DOI: https://doi.org/10.1016/j.csite.2022.101859
  61. Hasanianpour Faridani, Z. and A. Ameri. (2022). Performance enhancement of a basin solar still using γ-Al 2 O 3 nanoparticles and a mixer: an experimental approach. Journal of Thermal Analysis and Calorimetry,  1-13. DOI: https://doi.org/10.1007/s10973-021-10564-1
  62. Modi, K.V., H.K. Jani, and I.D. Gamit. (2021). Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. Journal of Thermal Analysis and Calorimetry,  143(2),  899-913. DOI: https://doi.org/10.1007/s10973-020-09351-1
  63. Benoudina, B., M.E.H. Attia, Z. Driss, A. Afzal, A.M. Manokar, and R. Sathyamurthy. (2021). Enhancing the solar still output using micro/nano-particles of aluminum oxide at different concentrations: an experimental study, energy, exergy and economic analysis. Sustainable Materials and Technologies,  29,  e00291. DOI: https://doi.org/10.1016/j.susmat.2021.e00291
  64. Nazari, S., H. Safarzadeh, and M. Bahiraei. (2019). Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. Journal of cleaner production,  208,  1041-1052. DOI: https://doi.org/10.1016/j.jclepro.2018.10.194
  65. Abdullah, A., F. Essa, Z. Omara, Y. Rashid, L. Hadj-Taieb, G.B. Abdelaziz, and A. Kabeel. (2019). Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study. Energy Conversion and Management,  199,  112024. DOI: https://doi.org/10.1016/j.enconman.2019.112024
  66. Chen, W., C. Zou, X. Li, and H. Liang. (2019). Application of recoverable carbon nanotube nanofluids in solar desalination system: An experimental investigation. Desalination,  451,  92-101. DOI: https://doi.org/10.1016/j.desal.2017.09.025
  67. Kabeel, A.E., Z. Omara, and F. Essa. (2017). Numerical investigation of modified solar still using nanofluids and external condenser. Journal of the Taiwan Institute of Chemical Engineers,  75,  77-86. DOI: https://doi.org/10.1016/j.jtice.2017.01.017
  68. Attia, M.E.H., A. Karthick, A.M. Manokar, Z. Driss, A.E. Kabeel, R. Sathyamurthy, and M. Sharifpur. (2021). Sustainable potable water production from conventional solar still during the winter season at Algerian dry areas: energy and exergy analysis. Journal of Thermal Analysis and Calorimetry,  145,  1215-1225. DOI: https://doi.org/10.1007/s10973-020-10277-x
  69. Sahota, L. and G. Tiwari. (2016). Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy,  130,  260-272. DOI: https://doi.org/10.1016/j.solener.2016.02.018
  70. Modi, K.V., D.L. Shukla, and D.B. Ankoliya. (2019). A comparative performance study of double basin single slope solar still with and without using nanoparticles. Journal of Solar Energy Engineering,  141(3),  031008. DOI: https://doi.org/10.1115/1.4041838
  71. Cherraye, R., B. Bouchekima, D. Bechki, H. Bouguettaia, and A. Khechekhouche. (2022). The effect of tilt angle on solar still productivity at different seasons in arid conditions (south Algeria). International Journal of Ambient Energy,  43(1),  1847-1853. DOI: https://doi.org/10.1080/01430750.2020.1723689
  72. Panchal, H., D. Mevada, K.K. Sadasivuni, F. Essa, S. Shanmugan, and M. Khalid. (2020). Experimental and water quality analysis of solar stills with vertical and inclined fins. Groundwater for Sustainable Development,  11,  100410. DOI: https://doi.org/10.1016/j.gsd.2020.100410
  73. Dhivagar, R. and M. Mohanraj. (2021). Performance improvements of single slope solar still using graphite plate fins and magnets. Environmental Science and Pollution Research,  28,  20499-20516. DOI: https://doi.org/10.1007/s11356-020-11737-5
  74. Tuly, S., M. Rahman, M. Sarker, and R. Beg. (2021). Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still. Journal of Cleaner Production,  287,  125458. DOI: https://doi.org/10.1016/j.jclepro.2020.125458
  75. Nafey, A.S., M. Abdelkader, A. Abdelmotalip, A.J.E.c. Mabrouk, and management. (2000). Parameters affecting solar still productivity.  41(16),  1797-1809.
  76. Omara, Z., A. Kabeel, and A. Abdullah. (2017). A review of solar still performance with reflectors. Renewable and Sustainable Energy Reviews,  68,  638-649. DOI: https://doi.org/10.1016/j.rser.2016.10.031
  77. Gnanaraj, S.J.P. and V. Velmurugan. (2019). An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination,  467,  12-28. DOI: https://doi.org/10.1016/j.desal.2019.05.015
  78. Essa, F., A. Abdullah, Z. Omara, A. Kabeel, and Y. Gamiel. (2021). Experimental study on the performance of trays solar still with cracks and reflectors. Applied Thermal Engineering,  188,  116652. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116652
  79. Younis, O., A.K. Hussein, M.E.H. Attia, F.L. Rashid, L. Kolsi, U. Biswal, A. Abderrahmane, A. Mourad, and A. Alazzam. (2022). Hemispherical solar still: Recent advances and development. Energy Reports,  8,  8236-8258. DOI: https://doi.org/10.1016/j.egyr.2022.06.037
  80. Abdullah, A., Z. Omara, F. Essa, A. Alarjani, I.B. Mansir, and M. Amro. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy,  214,  268-279. DOI: https://doi.org/10.1016/j.solener.2020.11.016
  81. El-Samadony, Y., A. Abdullah, and Z. Omara. (2015). Experimental study of stepped solar still integrated with reflectors and external condenser. Experimental heat transfer,  28(4),  392-404. DOI: https://doi.org/10.1080/08916152.2014.890964
  82. Tanaka, H. (2009). Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination,  249(1),  130-134. DOI: https://doi.org/10.1016/j.desal.2009.02.057
  83. Bataineh, K.M. and M.A. Abbas. (2020). Performance analysis of solar still integrated with internal reflectors and fins. Solar Energy,  205,  22-36. DOI: https://doi.org/10.1016/j.solener.2020.04.059
  84. Abdullah, A., F.A. Essa, H.B. Bacha, and Z. Omara. (2020). Improving the trays solar still performance using reflectors and phase change material with nanoparticles. Journal of Energy Storage,  31,  101744. DOI: https://doi.org/10.1016/j.est.2020.101744
  85. Kabeel, A., M.M. Khairat Dawood, T. Nabil, and B.E. Alonafal. (2020). Improving the performance of stepped solar still using a graphite and PCM as hybrid store materials with internal reflectors coupled with evacuated tube solar collector. Heat and Mass Transfer,  56,  891-899. DOI: https://doi.org/10.1007/s00231-019-02741-8
  86. Bhargva, M. and A. Yadav. (2024). Productivity augmentation of single-slope solar still using evacuated tubes, heat exchanger, internal reflectors and external condenser. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,  46(1),  2646-2666. DOI: https://doi.org/10.1080/15567036.2019.1691291
  87. Sharshir, S.W., M. Rozza, M. Elsharkawy, M. Youns, F. Abou-Taleb, and A. Kabeel. (2022). Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial. Desalination,  539,  115939. DOI: https://doi.org/10.1016/j.desal.2022.115939
  88. Estahbanati, M.K., A. Ahsan, M. Feilizadeh, K. Jafarpur, S.-S. Ashrafmansouri, and M. Feilizadeh. (2016). Theoretical and experimental investigation on internal reflectors in a single-slope solar still. Applied energy,  165,  537-547. DOI: https://doi.org/10.1016/j.apenergy.2015.12.047
  89. Gnanaraj, S.J.P., S. Ramachandran, and D.S. Christopher. (2017). Enhancing the design to optimize the performance of double basin solar still. Desalination,  411,  112-123. DOI: https://doi.org/10.1016/j.desal.2017.02.011
  90. Afrand, M., R. Kalbasi, A. Karimipour, and S. Wongwises. (2016). Experimental investigation on a thermal model for a basin solar still with an external reflector. Energies,  10(1),  18. DOI: https://doi.org/10.3390/en10010018
  91. Omara, Z., A. Abdullah, F. Essa, and M. Younes. (2021). Performance evaluation of a vertical rotating wick solar still. Process Safety and Environmental Protection,  148,  796-804. DOI: https://doi.org/10.1016/j.psep.2021.02.004
  92. Essa, F., Z. Omara, A. Abdullah, A. Kabeel, and G. Abdelaziz. (2021). Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Studies in Thermal Engineering,  27,  101222. DOI: https://doi.org/10.1016/j.csite.2021.101222
  93. Hansen, R.S., C.S. Narayanan, and K.K. Murugavel. (2015). Performance analysis on inclined solar still with different new wick materials and wire mesh. Desalination,  358,  1-8. DOI: https://doi.org/10.1016/j.desal.2014.12.006
  94. Omara, Z., A. Kabeel, A. Abdullah, and F. Essa. (2016). Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination,  381,  111-116. DOI: https://doi.org/10.1016/j.desal.2015.12.001
  95. Abdelaziz, G.B., A.M. Algazzar, E.M. El-Said, A.M. Elsaid, S.W. Sharshir, A. Kabeel, and S. El-Behery. (2021). Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. Journal of Energy Storage,  41,  102933. DOI: https://doi.org/10.1016/j.est.2021.102933
  96. Murugavel, K.K. and K. Srithar. (2011). Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy,  36(2),  612-620. DOI: https://doi.org/10.1016/j.renene.2010.08.009
  97. Sharshir, S.W., M. Salman, S. El-Behery, M. Halim, and G.B. Abdelaziz. (2021). Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors. International Journal of Energy and Environmental Engineering,  12(3),  517-530. DOI: https://doi.org/10.1007/s40095-021-00386-0
  98. Manikandan, V., K. Shanmugasundaram, S. Shanmugan, B. Janarthanan, and J. Chandrasekaran. (2013). Wick type solar stills: a review. Renewable and sustainable energy reviews,  20,  322-335. DOI: https://doi.org/10.1016/j.rser.2012.11.046
  99. Velmurugan, V., M. Gopalakrishnan, R. Raghu, and K. Srithar. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management,  49(10),  2602-2608. DOI: https://doi.org/10.1016/j.enconman.2008.05.010
  100. Essa, F., W.H. Alawee, S.A. Mohammed, H.A. Dhahad, A. Abdullah, and Z. Omara. (2021). Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Studies in Thermal Engineering,  27,  101368. DOI: https://doi.org/10.1016/j.csite.2021.101368
  101. Alawee, W.H., F. Essa, S.A. Mohammed, H.A. Dhahad, A. Abdullah, Z. Omara, and Y. Gamiel. (2021). Improving the performance of pyramid solar distiller using dangled cords of various wick materials: Novel working mechanism of wick. Case Studies in Thermal Engineering,  28,  101550. DOI: https://doi.org/10.1016/j.csite.2021.101550
  102. Mahdi, J., B. Smith, and A. Sharif. (2011). An experimental wick-type solar still system: design and construction. Desalination,  267(2-3),  233-238. DOI: https://doi.org/10.1016/j.desal.2010.09.032
  103. Younes, M., A. Abdullah, F. Essa, Z. Omara, and M. Amro. (2021). Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Safety and Environmental Protection,  150,  440-452. DOI: https://doi.org/10.1016/j.psep.2021.04.036
  104. Mohamed, A., A. Hegazi, G. Sultan, and E.M. El-Said. (2019). Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis. Applied Thermal Engineering,  150,  1206-1215. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.070
  105. Peng, G., S.W. Sharshir, Y. Wang, M. An, D. Ma, J. Zang, A. Kabeel, and N. Yang. (2021). Potential and challenges of improving solar still by micro/nano-particles and porous materials-A review. Journal of Cleaner Production,  311,  127432. DOI: https://doi.org/10.1016/j.jclepro.2021.127432
  106. Rashidi, S., N. Rahbar, M.S. Valipour, and J.A. Esfahani. (2018). Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Applied Thermal Engineering,  130,  1341-1348. DOI: https://doi.org/10.1016/j.applthermaleng.2017.11.089
  107. Arunkumar, T., A. Kabeel, K. Raj, D. Denkenberger, R. Sathyamurthy, P. Ragupathy, and R. Velraj. (2018). Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. Journal of Cleaner Production,  195,  1149-1161. DOI: https://doi.org/10.1016/j.jclepro.2018.05.199
  108. Mohamed, A., A. Hegazi, G. Sultan, and E.M. El-Said. (2019). Enhancement of a solar still performance by inclusion the basalt stones as a porous sensible absorber: experimental study and thermo-economic analysis. Solar Energy Materials and Solar Cells,  200,  109958. DOI: https://doi.org/10.1016/j.solmat.2019.109958
  109. Hassan, H., M.S. Yousef, M.S. Ahmed, and M. Fathy. (2020). Energy, exergy, environmental, and economic analysis of natural and forced cooling of solar still with porous media. Environmental Science and Pollution Research,  27(30),  38221-38240. DOI: https://doi.org/10.1007/s11356-020-09995-4
  110. Abdallah, S., M.M. Abu-Khader, and O. Badran. (2009). Effect of various absorbing materials on the thermal performance of solar stills. Desalination,  242(1-3),  128-137. DOI: https://doi.org/10.1016/j.desal.2008.03.036
  111. Rajaseenivasan, T., T. Elango, and K.K. Murugavel. (2013). Comparative study of double basin and single basin solar stills. Desalination,  309,  27-31. DOI: https://doi.org/10.1016/j.desal.2012.09.014
  112. Rajaseenivasan, T., K. Kalidasa Murugavel, and T. Elango. (2015). Performance and exergy analysis of a double-basin solar still with different materials in basin. Desalination and Water Treatment,  55(7),  1786-1794. DOI: https://doi.org/10.1080/19443994.2014.928800
  113. Rajaseenivasan, T. and K.K. Murugavel. (2013). Theoretical and experimental investigation on double basin double slope solar still. Desalination,  319,  25-32. DOI: https://doi.org/10.1016/j.desal.2013.03.029
  114. Zurigat, Y.H. and M.K. Abu-Arabi. (2004). Modelling and performance analysis of a regenerative solar desalination unit. Applied thermal engineering,  24(7),  1061-1072. DOI: https://doi.org/10.1016/j.desal.2013.03.029
  115. ElSherbiny, S.M. and H.E. Fath. (1993). Solar distillation under climatic conditions of Egypt. Renewable energy,  3(1),  61-65. DOI: https://doi.org/10.1016/0960-1481(93)90131-Y
  116. Elsafty, A., H. Fath, and A. Amer. (2008). Mathematical model development for a new solar desalination system (SDS). Energy conversion and management,  49(11),  3331-3337. DOI: https://doi.org/10.1016/j.enconman.2008.04.016
  117. El-Sebaii, A. (2004). Effect of wind speed on active and passive solar stills. Energy Conversion and Management,  45(7-8),  1187-1204. DOI: https://doi.org/10.1016/j.enconman.2003.09.036
  118. El-Sebaii, A. (2000). Effect of wind speed on some designs of solar stills. Energy Conversion and Management,  41(6),  523-538. DOI: https://doi.org/10.1016/S0196-8904(99)00119-3
  119. El-Sebaii, A. (2011). On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover. Energy,  36(8),  4943-4949. DOI: https://doi.org/10.1016/j.energy.2011.05.038
  120. Rajaseenivasan, T., K.K. Murugavel, T. Elango, and R.S. Hansen. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews,  17,  248-259. DOI: https://doi.org/10.1016/j.rser.2012.09.035
  121. Estahbanati, M.K., M. Feilizadeh, K. Jafarpur, M. Feilizadeh, and M.R. Rahimpour. (2015). Experimental investigation of a multi-effect active solar still: the effect of the number of stages. Applied Energy,  137,  46-55. DOI: https://doi.org/10.1016/j.apenergy.2014.09.082
  122. Shanazari, E. and R. Kalbasi. (2018). Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Applied Thermal Engineering,  143,  1-10. DOI: https://doi.org/10.1016/j.applthermaleng.2018.07.021
  123. Xiong, J., G. Xie, and H. Zheng. (2013). Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface. Energy conversion and management,  73,  176-185. DOI: https://doi.org/10.1016/j.enconman.2013.04.024
  124. Alshammari, F., M. Elashmawy, and M.M. Ahmed. (2021). Cleaner production of freshwater using multi-effect tubular solar still. Journal of Cleaner Production,  281,  125301. DOI: https://doi.org/10.1016/j.jclepro.2020.125301
  125. Mohanraj, M., L. Karthick, and R. Dhivagar. (2021). Performance and economic analysis of a heat pump water heater assisted regenerative solar still using latent heat storage. Applied Thermal Engineering,  196,  117263. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117263
  126. Dhivagar, R., B. Deepanraj, M. Mohanraj, and A. Prakash. (2022). Thermal performance, cost effectiveness and environmental analysis of a heat pump assisted regenerative solar still using slack wax as heat storage material. Sustainable Energy Technologies and Assessments,  52,  102090. DOI: https://doi.org/10.1016/j.seta.2022.102090
  127. Hidouri, K., R.B. Slama, and S. Gabsi. (2010). Hybrid solar still by heat pump compression. Desalination,  250(1),  444-449. DOI: https://doi.org/10.1016/j.desal.2009.09.075
  128. Halima, H.B., N. Frikha, and R.B. Slama. (2014). Numerical investigation of a simple solar still coupled to a compression heat pump. Desalination,  337,  60-66. DOI: https://doi.org/10.1016/j.desal.2014.01.010
  129. Shakir, Y., M. Mohanraj, Y. Belyayev, S. Jayaraj, and A. Kaltayev. (2016). Numerical simulation of a heat pump assisted regenerative solar still for cold climates of Kazakhstan. Bulgarian Chemical Communications,  48(1),  126. DOI: http://dx.doi.org/10.2298/TSCI17S2411S
  130. Hidouri, K. and M. Mohanraj. (2019). Thermodynamic analysis of a heat pump assisted active solar still. Desalination and Water Treatment,  154,  101-110. DOI: https://doi.org/10.5004/dwt.2019.24047
  131. Boutriaa, A. and A. Rahmani. (2017). Thermal modeling of a basin type solar still enhanced by a natural circulation loop. Computers & Chemical Engineering,  101,  31-43. DOI: https://doi.org/10.1016/j.compchemeng.2017.02.033
  132. Rahmani, A., A. Boutriaa, and A. Hadef. (2015). An experimental approach to improve the basin type solar still using an integrated natural circulation loop. Energy conversion and management,  93,  298-308. DOI: https://doi.org/10.1016/j.enconman.2015.01.026
  133. Balasubramanian, K., B. Jinshah, K. Ravikumar, and S. Divakar. (2022). Thermal and hydraulic characteristics of a parabolic trough collector based on an open natural circulation loop: The effect of fluctuations in solar irradiance. Sustainable Energy Technologies and Assessments,  52,  102290. DOI: https://doi.org/10.1016/j.seta.2022.102290
  134. Chaichan, M.T., H.A. Kazem, A.H. Al-Waeli, S.A. Mohammed, Z.M. Omara, and K. Sopian. (2023). Performance enhancement of solar distillation system works in harsh weather conditions: An experimental study. Thermal Science and Engineering Progress,  43,  101981. DOI: https://doi.org/10.1016/j.tsep.2023.101981
  135. Danish, S.N., A. El-Leathy, M. Alata, and H. Al-Ansary. (2019). Enhancing solar still performance using vacuum pump and geothermal energy. Energies,  12(3),  539. DOI: https://doi.org/10.3390/en12030539
  136. Verma, S., R. Das, and N.K. Mishra. (2023). Concept of integrating geothermal energy for enhancing the performance of solar stills. Desalination,  564,  116817. DOI: https://doi.org/10.1016/j.desal.2023.116817
  137. Forghani, A.H., A.A. Solghar, and H. Hajabdollahi. (2024). Optimal design of a multi-generation system based on solar and geothermal energy integrated with multi-effect distillatory. Applied Thermal Engineering,  236,  121381. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121381
  138. Gaur, M. and G. Tiwari. (2010). Optimization of number of collectors for integrated PV/T hybrid active solar still. Applied Energy,  87(5),  1763-1772. DOI: https://doi.org/10.1016/j.apenergy.2009.10.019
  139. Kabeel, A., R. Sathyamurthy, S. El-Agouz, A. Muthu Manokar, and E.M. El-Said. (2019). Experimental studies on inclined PV panel solar still with cover cooling and PCM. Journal of Thermal Analysis and Calorimetry,  138,  3987-3995. DOI: https://doi.org/10.1007/s10973-019-08561-6
  140. Singh, D., J. Yadav, V. Dwivedi, S. Kumar, G. Tiwari, and I. Al-Helal. (2016). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy,  130,  207-223. DOI: https://doi.org/10.1016/j.solener.2016.02.024
  141. Abd Elbar, A.R. and H. Hassan. (2019). Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration. Solar Energy,  184,  584-593. DOI: https://doi.org/10.1016/j.solener.2019.04.042
  142. Manokar, A.M., D.P. Winston, A. Kabeel, and R. Sathyamurthy. (2018). Sustainable fresh water and power production by integrating PV panel in inclined solar still. Journal of cleaner production,  172,  2711-2719. DOI: https://doi.org/10.1016/j.jclepro.2017.11.140
  143. Winston, D.P., P. Pounraj, A.M. Manokar, R. Sathyamurthy, and A. Kabeel. (2018). Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination,  435,  140-151. DOI: https://doi.org/10.1016/j.desal.2017.11.007
  144. Riahi, A., K. Wan Yusof, B.S. Mahinder Singh, M.H. Isa, E. Olisa, and N.A.M. Zahari. (2016). Sustainable potable water production using a solar still with photovoltaic modules-AC heater. Desalination and Water Treatment,  57(32),  14929-14944. DOI: https://doi.org/10.1080/19443994.2015.1070285
  145. Moh’d A, A.-N. and W.A. Al-Ammari. (2016). A novel hybrid PV-distillation system. Solar energy,  135,  874-883. DOI: https://doi.org/10.1016/j.solener.2016.06.061