
Journal of Solar Energy Research Volume 9 Number 3 Summer (2024) 1966-1980 
 

 

 

 

 

 
*Corresponding Author Email:rishikaster@gmail.com 

                                               

Cite this article: Chauhan, R., Sharma, S., & Pachauri, R. (2024). Performance Prediction of Conventional and 

Modified Solar Stills Using Levenberg Marquardt Algorithm-Based Artificial Neural Network Model: An 

Experimental and Stochastic Evaluation. Journal of Solar Energy Research, 9(3), 1966-1980. doi: 

10.22059/jser.2024.380006.1449 

 

DOI: 10.22059/jser.2024.380006.1449                                                DOR: Do not type here   

 

 ©The Author(s). Publisher: University of Tehran Press. 

Journal of Solar Energy Research (JSER) 
 

Journal homepage: www.jser.ut.ac.ir 

 

Performance Prediction of Conventional and Modified Solar Stills Using 

Levenberg Marquardt Algorithm-Based Artificial Neural Network Model: 

An Experimental and Stochastic Evaluation 

 

Rishika Chauhana,*, Shefali Sharmaa, Rahul Pachaurib  

 
aDepartment of Electronics and Communication Engineering, Jaypee University of Engineering and Technology, 

A.B. Road, Raghogarh-473226, Guna, Madhya Pradesh, India.  
bDepartment of Computer Science and Engineering, Jaypee University of Engineering and Technology, A.B. Road, 

Raghogarh-473226, Guna, Madhya Pradesh, India. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Water, an indispensable element, critical for 

everyone’s survival, is facing increasing pollution, 

largely attributed to human activities, particularly 

industrial processes. The very water sources on 

which everyone’s existence rely are disappearing, 

and the worldwide yearly per person accessibility of 

drinkable water is diminishing while the demand is 

steadily rising. This crisis is not limited to 

A B S T R A C T 

A neural network (ANN) model employing the Levenberg-Marquardt (LM) algorithm 

was formulated and employed to study the functionality of both conventional (CSS) 

and modified (MSSW and MSSU) solar distillation systems. Numerous input factors, 

comprising solar irradiance, wind speed, atmospheric conditions, glass properties, and 

water temperatures, were carefully selected, with the yield of distilled water serving as 

the target variable. The model underwent a process of testing, training, and validation 

utilizing empirical data obtained from CSS, MSSW, and MSSU setups, achieving a 

confidence level of 95%. After validation, the model's capabilities were utilized to 

forecast the distilled water output based on a distinct set of input parameters. The 

outcomes unveiled a negligible deviation, with a maximum disparity of 3.1% and 

4.6% observed in comparison to the experimental findings for MSSW, and MSSU 

setups, respectively, thereby signifying a substantial agreement between theoretical 

predictions and experimental observations. Furthermore, the model exhibited 

outstanding accuracy in contrast to well-established numerical models proposed by 

several researchers, thereby demonstrating its efficacy in predicting the performance 

of solar stills. 

ARTICLE  INFO 
 

Article Type: 

Research Article 

 

Received:27.07.2024 

Accepted:01.10.2024 
 

 

Keywords:  

Artificial Neural Network 

LM Algorithm 

Desalination 

Conventional solar still 

Ultrasonic fogger 

 

https://doi.org/10.22059/jser.2024.380006.1449


Chauhan et al./Journal of Solar Energy Research Volume 9 Number 3 Summer (2024) 1966-1980 

1967 

 

developing nations; even developed countries are 

grappling with a potable water shortage [1,2]. 

Addressing this pressing issue, especially in 

impoverished regions with burgeoning populations, 

necessitates earnest efforts to cultivate sustainable, 

environmental friendly, and inexpensive machinery 

or techniques for changing brackish or saline water 

into drinkable water [3–6]. Among these solutions, 

the conventional solar still (CSS) stands out as 

devices utilizing solar energy to facilitate the 

conversion process. However, their efficacy is 

hindered by low productivity and a substantial 

requirement for surface area [7–11]. 

To boost the effectiveness of solar stills, 

scientists are actively investigating three key factors: 

the temperature of the glass, water temperature, and 

the surface area of the water. By raising the 

temperature of the water and expanding the 

evaporation area while simultaneously decreasing 

the temperature of the condensing cover, substantial 

improvements in still productivity can be achieved. 

Researchers are actively exploring improvements in 

these areas to improve the efficiency of CSS [12–

15]. 

Sodha et al.  [16] explored the operation of a 

multi-wick solar still, which resulted in a largest 

collective output of 2.45 kg/m2 under sunlight. Jamil 

and Akhtar [17] explored the characteristic height, 

specifically aspect ratios ranging from 1.94 to 2.67, 

on the CSS yield. Dumka and Mishra [18] have 

investigated the influence of salinity strength on the 

heat transfer coefficient of a solar distiller. The 

collective efforts of researchers aim to overcome the 

limitations of distillers and significantly enhance 

their productivity for a green solution to the global 

potable water crisis. Velmurugan et al. [19]  

explored enhancements to CSS by introducing fins 

and sponges, resulting in a significant yield increase 

of 40.2% and 45%, respectively. Dhivagar et al. [20] 

have reported the integration of black powder-coated 

crushed granite stone with solar desalination and 

district heating to enhance both water production 

and cooling efficiency of solar desalination unit. The 

impact of magnetic power (which will act as energy 

storage medium) of the performance of solar distiller 

unit has been experimentally explored by Dhivagar 

et al. [21]. 

Deshmukh and Thombre [22] explored the 

integration of sand and “servo-therm medium oil” as 

an energy storing substance underneath the baseliner 

of a CSS. Khanafer and Vafai [23] conducted an 

extensive examination of the use of nanofluids in 

CSS. Dumka and Mishra [24,25] conducted an in-

depth relative assessment of enhanced solar still 

(combined with the earth) and a CSS. In an 

experimental study, Kabeel et al. [26] presented a 

relative analysis of 3 diverse solar distiller units: 

CSS, CSS enhanced with energy storage, and CSS 

enhanced with jute-knitted energy storage, by 

examining variations in water in basin. These 

research endeavours offer valuable perspectives for 

enhancing the efficiency and efficacy of solar stills, 

tackling the hurdles linked with potable water 

generation.  

Alaian et al. [27] took out experimental studies 

on CSS enhanced with “pin-finned wicks”. Their 

conclusions indicated a remarkable improvement in 

performance and yield of wick-augmented and pin-

finned CSS, with increments of 23% and 55%, 

respectively, when compared to a standard CSS. 

These studies contribute valuable insights into 

innovative modifications to solar still designs, 

offering increased efficiency and higher distillate 

yields for sustainable water production. Alamshah et 

al. [28] have reported an experimental study where 

they have used a 3-D solar distiller unit to study the 

impact of shape on the performance of solar distiller 

units. Shoeibi et al. [29] have reported an extensive 

review on the performance of solar energy systems 

in the presence of PCM. In another study 

Hemmatian et al. [30] have mentioned the use of 

PCM on heat pipes and solar collectors. 

Kumar et al. [31] have documented the 

augmentation of honeycomb in CSS to increase its 

distillate due to the waters capillary action. Dumka 

et al. [32] have communicated the application of 

Plexiglas and wick to increase the performance of 

CSS due to the capillary effect and heat localization. 

To meet the demand for precise and dependable 

modelling of solar energy systems [33–38], 

researchers have turned to Artificial Neural Network 

(ANN) models as a viable alternate to conventional 

approaches [39–45]. The successful application of 

ANN models in this context is attributed to their 

capability to handle the substantial uncertainty 

inherent in solar energy data. Extensive studies have 

established ANN as a robust tool for modelling 

various engineering systems [46–49]. Dumka et al. 

[50] have reported the use of saltwater bottles in the 

CSS cavity to improve the energy holding capacity 

of still. Due to the presence of Saltwater bottles, they 

have recorded an improvement of 25.4% in the 

distillate yield. 

Dumka et al. [51] utilized ANN to project the 

yield of CSS enhanced with jute-covered balls. 

Mashaly and Alazba [52] constructed a model based 

on ANN which aimed at forecasting the yield, 

efficiency, and effective recovery ratio of a solar 
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distillation unit. Their findings underscored the 

precision and efficiency of the model in projecting 

the behaviour of the still with minimal errors. 

Chauhan et al. [53] demonstrated that how one can 

estimate the moist air properties by using ANN. 

Their study unveiled that LM algorithm is the best to 

predict the properties.  

Previous research has primarily focused on two 

approaches: Improving water temperature and 

surface area through the application of latent and 

sensible energy storage materials, while lowering 

condensing cover temperature by circulating water 

across it. To increase surface area, Dumka and 

Mishra [54] proposed an ultrasonic fogger within the 

CSS basin. However, they found that while the 

fogger performed well during sunny hours, its 

effectiveness decreased substantially in the evening 

due to excessive fogging. To address this issue, 

Dumka et al. [55] incorporated a cotton cloth 

envelope, acting as a tent to absorb excess mist 

created by the fogger while also reducing the 

characteristic length of the solar stills. However, 

they noted the complexity of developing a 

mathematical model for such arrangements and 

minimized theoretical analysis accordingly. 

In this article, the authors address the problem by 

developing an ANN model to simulate the complex 

physics of a CSS, both with and without the 

integration of an ultrasonic fogger and cotton cloth. 

The experiments were conducted multiple times to 

refine the ANN-based theoretical model, which 

evaluates the performance of the CSS and its 

variations: CSS with a fogger and wick (MSSW) 

and CSS with an ultrasonic fogger (MSSU), 

specifically in predicting distillate output. 

The key novelties of this work include the 

development and implementation of an Artificial 

Neural Network (ANN) model, specifically using 

the Levenberg-Marquardt (LM) algorithm, to predict 

the performance of various solar distillation systems 

accurately (CSS, MSSW, and MSSU). This 

approach allows for a unified evaluation of multiple 

input factors such as solar irradiance, wind speed, 

atmospheric conditions, and water temperatures. 

Moreover, the model’s ability to forecast distilled 

water output with a high degree of precision (less 

than 5% deviation) and its noteworthy improvement 

over traditional numerical methods (as proposed by 

Dunkle [56], Kumar & Tiwari [57], and Tsilingiris 

[58,59]) in predicting the yield. The model not only 

make easy the evaluation of solar still performance 

but also go beyond the complexity of existing heat 

and mass transfer analyses. Additionally, the ANN 

model's validation using experimental data from 

multiple solar distillation setups is another novel 

contribution, offering a robust and reliable method 

for future predictions in solar distillation research. 

These advancements show a meaningful 

contribution to the field, by providing a more 

accurate and efficient predictive tool for assessing 

solar still performance. 

2. Experimental setup  

Three identical single-slope conventional solar 

stills, facing south, were constructed using 5 mm 

thick FRP material. The stills featured lower and 

higher vertical edge heights measuring 19.5 and 64.5 

cm, respectively. To optimize the absorption of 

incident solar radiations, both stills were internally 

coated with black paint. Bubble wrap was employed 

to stop the energy dissipation from the below and 

sides of the stills. The basin water was contained in 

blackened Galvanized iron trays, having a thickness 

of 0.74 mm, occupying 1 m2 area and standing at a 

height of 10 cm within both stills. For top coverage, 

4 mm broad glass were utilized, forming 24° angle 

with the ground, reflecting the latitudinal site of 

Guna, India. This construction aimed to create an 

efficient CSS setup while considering the 

geographical context.  

In one still, an ultrasonic fogger (MSSW) is 

placed, while in another, both cotton cloth and 

fogger are utilized (MSSW). The third setup is kept 

unchanged for comparison (CSS).  

An ultrasonic fogger operates using a 

piezoelectric ceramic disc that is powered by current 

through two nickel electrodes. The piezoelectric 

nature of the ceramic causes it to oscillate at an 

ultrasonic frequency when an electric current is 

applied, making the sound waves in the water silent. 

As the oscillation frequency of plate increases, the 

water attempts to follow but, due to its weight and 

inertia, cannot keep up, resulting in a phenomenon 

known as water hammering [60,61].  This mismatch 

between the water's motion and the oscillating plate 

creates a low-pressure area between them, which 

causes the formation of a cavity, a process known as 

cavitation. When the cavity collapses, it releases a 

significant amount of energy, producing a powerful 

imploding jet. Simultaneously, the vibrating disc 

generates capillary waves, or ripples, on the water's 

surface due to Taylor instability [62]. These 

capillary waves continue oscillating because of 

gravity and surface tension. When the cavity 

collapses, it creates a cross-patterned wave on the 

water surface, and tiny droplets at the wave crests 

break free from the surface tension. These droplets 
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are then carried away by the air above the water, 

emerging from the humidifier as mist. The size of 

the droplets becomes smaller as the oscillation 

frequency increases. If the capillary waves oscillate 

at approximately half of the driving frequency, the 

atomization threshold tends to be proportional to the 

viscosity of the water [60,63]. 

As the solar radiation decreases after the evening 

time, mist formation inside the solar still increases 

(as radian intensity decreases to zero), leading to a 

reduced evaporation rate. To address the issue of 

excessive misting and improve overall yield, Dumka 

and Mishra [55] have proposed the use of a cotton 

cloth mounted on a metallic frame, placed over the 

basin area. This setup acts as a shelter, covering both 

the basin water and the fogger. Thus, reducing the 

chances of mist to come in direct contact of the inner 

condensing cover. 

The stills were analysed using 50 kg water in it, 

as suggested by Dumka and Mishra [54]. 

Temperature measurements were conducted using 

thermocouples of type K (model K 7/32-2C-TEF), 

while radiation intensity of sun rays was obtained 

using a solar-power-meter (model LX-107). The 

collection of the distillate was done using Borosil 

measuring flasks. The FlikFinz Mist Maker 

(B07GTWWQ4N) fogger is utilized during the 

experiment. The Photographs of CSS, MSSU, and 

MSSW are presented in Fig.1. 

Standard uncertainties (u) of Type B are judged 

[64–68] which are evaluated as: a/√3 where, a is the 

device accuracy. The value of u for thermocouple, 

graduated cylinder, and solar power meter came out 

as 0.06°C, 0.6 ml, and 5.77 W/m2 for an accuracy of 

±0.1°C, ±1 ml, and ±10 W/m2, respectively.  

  

 
Fig. 1. Photographs of Solar Stills 

3. Method 

3.1. ANN architecture 

Neural networks draw inspiration from the 

human brain, enabling them to mimic human-like 

thinking patterns. These networks, commonly 

known as ANN (artificial neural networks), are 

constructed using artificial neurons as their basic 

components. Within an ANN model, weights 

(denoted as w) play a crucial role in establishing 

connections between multiple neurons [69,70]. 

These neurons operate in parallel, receiving 

weighted input data through incoming connections, 

as illustrated in Fig. 2. The network output is 

generated by summing up these inputs and 

subjecting them to an activation function (like 

sigmoid, ReLU, or tanh). This function determines 

the output of the neuron by introducing non-

linearity. The final output can be sent to other 

neurons or produce a final result. Through careful 

adjustment of weights (w) and bias (b), neurons can 

adapt for various forms of generalization. This 

adjustment process, known as training, refines the 

network's performance [71]. 

 

 
Fig. 2. Artificial neuron 

 

ANN is generally characterized into networks of 

“feedback” and “feedforward” characteristics. The 

data flows unidirectionally commencing at the input 

neuron to the output neuron in a feedforward ANN. 

These networks can be either simple, suitable for 

addressing straightforward problems, or multi-

layered, adept at handling complex problems. In a 

multi-layered neural network, the yield of one layer 

acts as subsequent layers input, often involving 

several hidden layers [72]. Kalogirou and Bojic  [40] 

proposed a formula (Eq. 1) to get the quantity of 

hidden nodes (M) in a hidden layer based on input 

and output nodes count. 

 

  (1) 

 

The backpropagation algorithm (BP) is 

employed to train these multilayer ANNs, wherein 

the error function is minimized using the gradient 

descent technique. Through error function 

backpropagation, adjustments are made to the 

network weights [72]. 
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3.2. LM algorithm 

This algorithm is a variant of Backpropagation 

method (BP), employs both Gauss-Newton & 

steepest descent techniques to minimize the error-

function, rendering it a hybrid algorithm [73–75]. A 

notable advantage of this algorithm is its power to 

accomplish second-order training pace without 

requiring evaluation of the H (Hessian matrix). 

Consequently, weight adjustments are made 

efficiently when utilizing LM algorithm. Unlike 

methods with a constant step size, LM algorithm 

dynamically adjusts the step size throughout 

iterations, initially starting with a large value and 

progressively decreasing it as the task advances. 

This step size variation is attributed to the 

combination of steepest descent and Gauss-Newton 

techniques [76]. 

In the BP algorithm, the MSE (mean square error) is 

adopted as the indicator of performance, and its 

gradient (g) and Hessian matrix (H) approximation 

are represented with the help of  network error 

vector (e) and Jacobian matrix (J) as follows 

[72,77]: 

   (2) 

     (3) 

 

In the LM algorithm, the Hessian matrix 

approximation is computed in the Newton-update 

step as follows [53]: 

    (4) 

where, I is the identity matrix. For a large value of 

step size (μ), LM algorithm behaves akin to gradient 

descent, while for lesser values, it resembles Gauss-

Newton. By combining the strengths of “Gauss-

Newton” and gradient descent approaches, the LM 

algorithm effectively addresses the given problem. 

3.3. Evaluation parameters 

Several statistical parameters are used to access 

the efficacy of LM algorithm, such as: overall model 

performance index (OI), root mean square error 

(RMSE), coefficient of residual mass (CRM), and 

efficiency coefficient (EC). RMSE acts as a gauge of 

the precision of forecasts generated by the ANN 

model. A lower RMSE value indicates more accurate 

predictions. EC and OI assess the fitness between 

actual and predicted data. Both EC and OI have 

maximum values of 1, indicating an accurate match 

between predicted and observed data. Therefore, the 

closer EC and OI are to 1, the better the match. 

CRM provides insight into whether the model 

overestimates or underestimates data relative to its 

true value. Ideally, CRM should approach zero for a 

perfect match between observed and forecasted 

values. The numerical expressions for these 

statistical parameters are as follows [40,42,69,72–

74,78]: 

     (5) 

         (6) 

     (7)  

   (8) 

where, ap,i,  ao,i, n, amax, amin  are the predicted value, 

observed value, number of samples, maximum 

observed value, minimum observed value. 

3.4. ANN methodology adopted 

In this research paper, a feedforward, BP, ANN, 

with three layers has been employed, comprising 

one input, one hidden, and one output layers. For 

model training, LM algorithm was utilized. Five 

variables, namely Tw (water temperature), Tci (glass 

temperature), I’ (solar intensity), Ta (atmospheric 

temperature), and vwind (wind velocity) serve as input 

variables for the neurons in the input layer for CSS, 

MSSU, and MSSW. For modified solar still with 

fogger and wick (MSSW), two more variables are 

included as input, wick_in and wick_out. The 

neuron in the output layer is connected to the yield 

( ). An artificial neural network with neuron 

numbers (12, 1) was constructed, indicating 12 

hidden layer neurons and one output layer neuron as 

shown in Fig. 3. MATLAB 2020 was utilized for 

training, testing, and validating the designed 

network model. 

 
(a) 

 
(b) 

Fig. 3. ANN model used (a) CSS and MSSU (b) 

MSSW 
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The following were the assumptions used in the 

analysis: 

 The properties of the materials used (such 

as the glass and the construction of the 

solar still) remain consistent during the 

experiments and model predictions.  

 The solar irradiance is measured at the 

same intervals and is uniformly distributed 

across the surface of the solar stills. 

 The wind speed, air temperature, and 

humidity are assumed to be stable during 

the testing periods.  

 The insulation of the solar stills is perfect, 

or negligible heat loss occurs through the 

sides or bottom of the setup. 

 The systems (CSS, MSSW, and MSSU) are 

assumed to have reached steady-state 

operation. 

 The water used in the solar stills is assumed 

to have consistent salinity levels. 

 The empirical data used for training, 

testing, and validating the ANN model are 

assumed to be representative of typical 

operational conditions for the solar 

distillation systems. 

 The ANN model is assumed to provide 

accurate predictions based on the specific 

input parameters. 

 The environmental factors not included in 

the model, such as dust on the glass or 

minor air flow variations. 

4. Results and Discussion  

The dataset in use is segmented into three subsets 

for training, validation, and testing. During the 

teaching phase, gradients/Jacobians are processed 

utilizing the training set, with weight adjustments 

executed after every iteration. Simultaneously, the 

validation set is employed to monitor the 

performance of ANN between training instances, 

evaluating the associated validation error. If, across 

multiple iterations, the validation error starts to rise, 

the training process is ceased, and the weights 

corresponding to the lowest error are chosen as the 

ultimate weights for trained network. 

 

 

 

 

The strewn points on the validation error-graph 

indicate instances of improved validation error. 

Ultimately, the efficacy of the trained model is 

assessed using the test data. 

 

Fig.4. Regression plot for CSS 

In Fig. 4, regression plots depict the relationship 

relating the network and the actual outputs. 

Throughout the stages of training, validation, and 

testing, the correlation coefficients stand at 0.9998, 

0.9992, and 0.9991, respectively for CSS. This 

indicates a close correspondence between the 

predicted and actual outputs, i.e., it can predict 

outputs with high accuracy. The overall correlation 

coefficient averages at 0.9996, underscoring the 

precision of the model's forecasts relative to the true 

values. The minor circles represent the data points, 

while the dashed line indicates situation where the 

acquired results match the targeted values. The 

continuous line depicts the optimal fitting among the 

predicted and the aimed values. A high correlation 

coefficient usually implies that the model has 

learned the underlying patterns in the data very well. 
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Fig. 5. Regression plot for MSSW 

 

Fig. 6. Regression plot for MSSU 

Fig. 5 and 6 represent the training, testing, and 

validation correlation coefficients for the overall 

data for MSSW and MSSU. The values obtained 

from the designed ANN model are 0.9999, 0.9996, 

and 0.9998 for MSSW and 0.9999, 0.9999, and 

0.9999 for MSSU respectively. These values 

indicate that the predicted outputs closely follow the 

actual outputs.  

The overall correlation coefficients are 0.9998 

and 0.9999 for MSSW and MSSU respectively, 

highlighting the strong relationship between the 

predicted and actual values. 

 

Fig. 7. Training state for CSS 

Fig. 7 highlights the deviation in gradient error, 

validation checks, and adjustments in step size for 

CSS. Gradient refers to the derivative of the loss 

function with respect to the model parameters. It 

indicates the direction and rate of change for model 

optimization. Gradient Error arises when there is a 

discrepancy or noise in the calculated gradient, 

potentially due to insufficient data, noisy samples, or 

other factors. Validation Checks refer to periodic 

evaluations performed during training to monitor the 

model’s performance on the validation set. It helps 

in detecting whether the model is improving or if 

early stopping is needed to avoid overfitting. Step 

size determines how big of a step the algorithm 

should take in the direction of the gradient during 

each update to the model’s parameters. It controls 

the speed and precision of parameter updates during 

training. In Fig. 7, the detected gradient error is 

8.852×10-5 at the 11th epoch. The gradient error is 

relatively small, showing the model is likely making 

more accurate updates to its parameters, which is a 

good indication of stable training. The validation 

checks and step size are 6 and 10-6, correspondingly, 

i.e., after every 6 epochs, the model’s performance is 

checked against the validation dataset and the model 

is making very small, gradual updates to its 

parameters during training, which can help ensure 

precision and stability in learning. The gradient error 

of 0.00015849 and 1.4408×10-9 for MSSW and 

MSSU are noted with validation checks at 6 and 4 

respectively as displayed by the Fig. 8 and 9. 
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Fig. 8. Training state for MSSW 

 

Fig. 9. Training state for MSSU 

Figs. 10, 11 and 12 exhibit the mean square error 

performance of CSS, MSSW and MSSU at epoch 11 

as 0.000134, 3.5×10-5 and 7.137×10-6, respectively. 

As lower MSE indicates better performance, MSSU 

outperforms both MSSW and CSS, as it has the 

lowest mean square error, indicating its predictions 

are closest to the actual values. CSS performs the 

worst with the highest MSE, and MSSW falls in 

between but is closer to MSSU in terms of 

performance. 

 

Fig. 10. Variation of MSE performance for CSS 

 

Fig. 11. Variation of MSE performance for MSSW 

 

Fig. 12. Variation of MSE performance for MSSU 
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Table 1. Observed values of RMSE, EC, OI and CRM 

 CSS MSSW MSSU 

RMSE 0.0135 0.0061 0.0031 

EC 0.9991 0.9995 1 

OI 0.9926 0.9953 0.9984 

CRM 0.0040 0.0037 -5.8×10-4 

Table 1 displays the RMSE, CRM, OI, and EC 

and values acquired by the developed ANN model, 

demonstrating its optimal alignment between 

network output and real output through the LM 

algorithm. The suggested model exhibits a robust fit, 

accurately predicting actual outputs, as evidenced by 

the proximity of RMSE and CRM values to zero and 

the closeness of EC and OI values to one. All three 

systems are predicted accurately by the ANN model, 

but MSSU shows the highest level of precision and 

reliability. 

The suggested model provides a simple way to 

predict yields from CSS, MSSW, and MSSU 

without needing advanced knowledge of heat and 

mass transfer. By using straightforward input 

variables, the model calculates performance 

parameters like RMSE, EC, OI, etc. which makes it 

easy to apply in various contexts. 

Utilizing input parameters from CSS, MSSW 

and MSSU experiments, the recommended ANN 

model has been employed to forecast distillate 

output. Fig. 13 illustrates the % error deviation for 

the three stills given by suggested ANN model.  

 

Fig. 13. % error variation of ANN based on the concerned 

data set 

These results prove the efficiency of the ANN in 

precisely forecasting the results as the theoretical 

heat and mass transfer models (Dunkle [56], Kumar 

& Tiwari [79], and Tsilingiris [59,80]) predicts the 

distillate which deviates much more than the 

experimental results [54,55]. 
 

5. Conclusions  

Drawing from the acquired experimental results 

and the recommended ANN model, following 

conclusions are derived: 

 Understanding the input factors facilitates the 

straightforward evaluation of CSS, MSSW, 

and MSSU performance employing the 

suggested ANN model.  

 The training process for the CSS, MSSW, 

and MSSU models demonstrates stable and 

precise optimization, as indicated by the 

small gradient errors and controlled updates 

to the model parameters, minimizing 

overfitting and ensuring reliable model 

performance. 

 The precision of the suggested ANN model 

can be readily assessed by analyzing various 

metrics such as CRM, RMSE, OI, EC, and R2 

obtained for CSS, MSSW, and MSSU. 

MSSU demonstrates the best performance, 

with the lowest prediction error (RMSE 

=0.0031), perfect efficiency (EC =1), and 

minimal bias (CRM = -5.8×10-4), making it 

the most accurate system predicted by the 

ANN model. MSSW performs better than 

CSS across all metrics, showing greater 

accuracy and less bias. CSS performs 

adequately but has slightly higher prediction 

errors compared to MSSU and MSSW. 

 The anticipated yield for CSS, MSSU, and 

MSSW shows less than 5% variance 

compared to their respective experimental 

counterparts. It shows that the proposed ANN 

model can be trusted to make accurate yield 

forecasts with minimal error, making it a 

valuable tool for practical applications. 

 The designed model is particularly 

advantageous for predicting the future yield 

of MSSW and MSSU, outperforming 

complex heat and mass transfer analyses 

reported by several researchers [41,42]. 

 

Future work will focus on expanding the current 

ANN model by including additional environmental 

and operational parameters, such as varying water 

salinity levels, different geographic locations, and 

seasonal variations, to further improve its predictive 

abilities. Additionally, efforts will be made to 

integrate real-time data acquisition systems into the 

model, enabling dynamic performance forecasting of 

solar distillation systems under changing 

environmental conditions. Finally, additional 

comparison with other machine learning algorithms 

will be explored to assess whether alternative 
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models can offer improvements in predictive 

accuracy and computational efficiency. 

Nomenclature  

a            Accuracy of instrument 

ap,i           predicted value 

ap,o                   observed value 

amax           maximum predicted value 

amin          minimum predicted value 

b                    bias 

e error vector 

g          gradient 

H          Hessian matrix 

I(t) incident solar radiation on inclined 

cover surface (W/m2) 

I            identity matrix 

J            Jacobian matrix 

JT         transpose of Jacobian matrix 

mew           distillate yield (ml) 

n        number of samples 

R        correlation coefficient 

R2          coefficient of determination 

Ta          ambient temperature 

Tci                    inner glass cover temperature 

Tw                     temperature of water surface 

u                    standard uncertainty 

wi                       weight 

xi                             input variable 

Greek Letter 

µ                step size 

Abbreviations 

ANN              artificial neural network 

BP               Back propagation 

CSS               conventional solar still 

CRM               coefficient of residual mass 

LM                      Levenberg Marquardt 

EC Efficiency coefficient 

MSSU               modified solar still integrated with 

ultrasonic fogger 

MSSW               modified solar still integrated with 

wick 

MSE              Mean square error 

OI              overall index of model 

performance 

RMSE               root mean square error 
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