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1. Introduction 

Solar energy is most utilized renewable energy source 

due to the ease of harvesting energy using solar grid 

of photovoltaic cells. These grids became more 

efficient since the monocrystalline bifacial solar 

panel came into market. Also, as the production of 

such panels increases leads to lower cost and in the 

 

A B S T R A C T 

Solar energy forecasting is necessary due to its variable and fluctuating nature, but it is 

also a challenge to predict accurately behaviour of solar irradiation. To capture this, the 

proposed methodology uses an ensemble model combined with error minimization and 

CEEMDAN Pre-processing technique. In this paper, data of two locations are used to 

predict short term forecasting of solar irradiation using seven developed models based 

on the proposed procedure. The use of hourly forecasting, CEEMDAN method, error 

minimization and ensemble hybrid model enhance the anti-interference capability of all 

developed model. Four-year data of New Delhi and Ahmedabad is used and sourced 

from NSRDB website. Out of all the proposed models CEEMDAN-CNN-BiLSTM-

MLP with CEEMDAN_IMF_18 configured signal processing approach achieved least 

average RMSE, n-RMSE and MAE of both locations with values 13.215 W/m2, 7.13% 

and 8.605 W/m2 respectively and have maximum average R2 (99.205%). When 

compared to persistence model, proposed model with this configuration was able to 

outperform with average percentage improvement 87.63%, 86.78%, 87.17% and 

17.875% in terms of  𝑃𝑅𝑀𝑆𝐸 , 𝑃𝑛𝑅𝑀𝑆𝐸 , 𝑃𝑀𝐴𝐸  and 𝑃𝑅2
  respectively. The proposed model 

outperforms existing techniques for solar irradiation forecasting, demonstrating greater 

efficiency and reliability, making it a valuable reference for future performance 

optimization. 
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upcoming years it will be the cheapest source for 

green energy. However, there is one major downside 

of solar energy that is its variability in power 

generation and it depends on seasons and weather. 

Due to these factors, it is necessary to estimate the 

power that can be harvest at a particular location, this 

can be done via solar irradiance forecasting. 

In pursuit of enhancing solar irradiance prediction 

accuracy, various prediction techniques have been 

proposed and evaluated. These methods include 

physical models, traditional statistical methods and 

persistence models. Persistence models are simple, 

assumes that future solar irradiation will be the same 

as it is now, so these models are limited to low 

accuracy as they do not consider variable 

environmental conditions. These models are helpful 

to set reference for accuracy in prediction and serves 

as benchmark for more advance models. Whereas 

physical models take care of variability of factors that 

impact the accuracy such as weather conditions, 

position of sun and many more. In spite of greater 

accuracy, physical models are usually 

computationally more expensive. In the reference [1] 

they examined machine learning models and physical 

models and found out machine learning models are 

comparably more beneficial for the forecasting. 

Traditional statistical approaches for predicting solar 

irradiance involve time series analysis and statistical 

modelling techniques to extract patterns and trends 

from historical data. These approaches include 

ARIMA, STL, and statistical regression models. 

In current scenarios with the advancement of 

DNNs (deep neural networks), they become the 

primary elements for ensemble models, such models 

have proven their supremacy over standalone models 

specially in the field of solar irradiance forecasting. 

Spatial and temporal characteristics have been 

extracted using LSTM-CNN model by the authors 

and the overall inspection findings demonstrated that 

ensemble models have greater potential than 

standalone models across various climatic and 

atmospheric factors and can be a better choice for 

immediate forecasting [2]. Despite the fact that 

combined approaches may employ the different 

capabilities of multiple models to predict subsequent 

input patterns based on existing data however, the 

most relevant data from the raw data cannot be 

thoroughly extracted by solely relying on ensemble 

models. As a result, ensemble models frequently pair 

with signal processing techniques to enhance the 

model's interference prevention capacity [3]. WPD 

and EEMD signal processing methods are commonly 

used in forecasting irradiance. In reference [4] 

researchers have used EEMD along with deep 

learning network, and they found out that inclusion of 

EEMD minimize the effect of variability for long-

term prediction hence improves prediction accuracy.  

Ke Yan et al. [5] proposed a new technique to 

detect fault in air handling units using imbalanced 

data samples. The traditional model face a problem of 

local minima in which unstable the system and 

decrease accuracy. The experimental result declare 

that propsoed model performance is better in all 

aspects. Hangxia Zhou et al. [6] developed a solar 

energy forecasting technique with a combination of 

artificial intelligence technique and internet of things. 

To remove the photovoltaic energy fluctulations 

problem, attention mechanism with deep learning 

model is used with three stages: training, testing and 

validation. Feng Zhong kai et al. [7] developed a 

model that combine data decomposition technique 

with deep learning model and grid search algoruthm 

is used to optimize the parameters of forecasted 

model. The propsed model use a relationship between 

network topology structure to identify the 

hyperparameters. The evaluation metrics result verify 

that propsoed model performance is better as 

compariosn to traditional model. In a study by Saeed 

Iqbal et al. [8], used a various meterological and 

environmental factors to investigate the difference 

between actual and measured temperature value to 

investigate power loss in the system, same as Mustafa 

et al. [9] used various environemntal factors have a 

considerable effect on the output of photovoltaic 

systems. The major four parameters are used to 

measure the effeciency of photovoltaic module.  To 

forecast solar irradiance, data-driven methods used 

by Benali L et al. [10]. The author forecast three 

components: global horizontal irradiance, direct 

normal irradiance and direct horizontal irradaince 

using naïve predictor, artificial neural network and 

random optimization forest method. The developed 

model performance are judge using normalized 

RMSE while L.Cornejo Bueno et al. [11] used a 

satellite data to forecast solar radiation using artificial 

intelligencce model. The data of Toledo Spain is used 

for training and testing. 

A machine learning method for solar power 

forecasting using hyperparameter selection 

technique. The optimiztion techique select the best 

parameter for machine learning model in which 

remove the huge amount of errors and increase 

accuracy, on the same path, william VanDeventer 

[12] implement support vector machine with genetic 

algorithm to predict solar power. The weather 

paramertes of Deakin University are optimized using 

genetic algorithm and use as a input of support vector 

machine model. The RMSE and MAPE are two 
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metrics used to evaluate the effectiveness of the 

suggested framework. 

Ahzam Shadab et al. [13] develop Autoregressive 

integerated moving average model with Box-Jenkis 

approach to predict solar irradiation using thirty four 

year satellite data of Jamia Millia Islamia University; 

New Delhi. The time series data is select using 

acutorcorrelaion function for regression model to 

forecast solar radiation while Sujan Ghimire et al. 

[14] utilize various models like as support vector 

machine, genertic programing model and time and 

fourier series model for forecast solar radiation. The 

data of five solar rich cities of Australia are used to 

check the performance of predictor model. The 

evaluation process is checked using Legates and 

McCabe Index value, Mean Absolute percentage 

Error and Willmott’s index calculation error. 

Haixiang Zang et al. [15] implement a three 

different-2 model to predict daily diffuse solar 

radiation. The five meterological parameters:  

temperature, humidity, pressure, clear sky index and 

sunshine ratio used as a input of forecasted model. 

The twenty year dataset of Lhasa and Urumqi and ten 

year dataset of Beijing and Wuhan of China are used 

for training and testing respectively. The photovoltaic 

power is predicted by Jin Dong et al [16] using 

uncertain basis function method.The data is taken 

from 13.50KW photovoltaic panel for trainig and 

testing. The accuracy of the propsoed model are 

compared with traditional model to showing the 

substantial improvement in the energy produced. 

Ying Deng et al. [17] implement a ensemble 

model using error correction strategy to predcit wind 

speed. The author improve the error correction series 

to increase the accuracy of hybrid model in which 

make by a combination of autoregressive integerated 

moving avergae with variational mode 

decomposition while Raj Kumar Sahu et al. [18] 

predict short and medium range solar radiation using 

Extreme learning Machine model optimized by 

tecaching learning technique. The forecasting is 

performed for one hour, one day and one month ahead 

and performance is measured various evaluation 

metrics: Mean Absolute Percentage Error, Root Mean 

Square Error and Correlation Coefficient. 

The bidirectional deep learning model is used to 

forrecast irradiation component by Cong Li et al. [19] 

The prediction is performed hourly basis and twenty 

five stations used for checking the performance of 

developed model in different-2 climate conditions. 

On the same platform Pardeep singla et al. [20]  used 

double decomposition with bidirectional model. One 

decomposition is used for decomposong the time 

series data and second one decomposition is used for 

preprocessing the error series. The author also use 

hypothesis test to validate the performance of 

developed model. The proposed model is tested using 

Mean Absolute Percentage Error, Root Mean Sqaure 

Error, Percentage Improvement and Diebold Mariano 

test. The same author implement twenty four ahead 

solar forecast using a hybrid model by making a 

combination of bidirectional long short term memory 

and wavelet decomposition technique. 

Cong Feng et al. [21] used skyimages for 

irradiance forecasting by implementing deep learning 

model. The author forecast ten minute to sixty minute 

ahead forecast using six year data. The forecast score 

value of deep learning model is better as comparison 

to smart persistence model.  

Samar Fatima et al. [22] implement Monte Carlo 

Simulation mechanisum to measure the assessment of 

low voltage distribution system. The proposed 

method is tested for sub urban area by locating 

rooftop photovoltaic panel. The method is tested for 

tow parameters using location and capacity.  

The measurement of air quality is the primary 

concern in today’s scenario and for this Zhaohua Wu 

et al. [23] develop a hybrid Biderectional long short 

term memory with wavelet transform preprocessing 

technique ensemble model to predict the quality of 

air. The measurement of air quality is very dificult 

due to nonavaliability of historical time series data of 

air and changing behavior of air qualtiy index. For the 

evaluation, various parameters are used like as: mean 

absolute percentsge error, root mean square error and 

correlation coefficent.  

VMD signal processing is used by Rijul Kumar 

Srivastava et al. [24] along with the predictor for 

irradiance forecasting and they compared the results 

with models without signal processing techniques. 

Their outcome showed that hybrid approach performs 

better in all perspectives. Prasad et al. [25] weekly 

irradiance forecasting is accomplished by utilizing 

dual decomposition approach to broke down the 

irradiance series into empirical modes. They 

concluded that MEMD-SVD-RF hybrid model gives 

more authentic results with greater accuracy. 

Researchers in reference [26] have taken the 

advantage of each approach by combining to propose 

a hybrid model that consist CNN-LSTM neural 

network and WPD signal processing and by analysing 

the findings of the research shows proposed approach 

gives considerable improvement in forecasting 

accuracy. Tong et al. [27] have proposed a unique 

approach to forecast irradiance by correcting the error 

associated with forecasting and they were able to 

reduce the RMSE approximately by 16.38%. 
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Table 1. Literature review of the existing study 

Author(year) & 

refference 

Input data Technique used  Result 

L.Cornejo-Bueno et 

al.(2019) [11] 

Clear sky, irradiance, 

CI 

ELM RMSE=60.60W/m2 

A.Shadab et al. (2019) 

[13] 

Sequential solar data Seasonal ARIMA MPE= 1.4 

J.Dong et al. 

(2020)[16] 

Oak Ridge National 

Laboratory 

Photovotaic data MAPE=5.72% 

n-RMSE=7.43% 

Ying deng et al. 

(2020)[17] 

Meterological data  EWT+ENN MAPE=2.35% 

Rajkumar Sahu et al. 

(2021)[18] 

Monthly solar 

radiation data 

ELM MAE=7.53W/m2, 

MAPE=14.77% 

Cong Li et al. 

(2021)[19] 

Meterological data BiLSTM RMSE=22.43W/m2 

Pardeep singla et al. 

(2022)[20] 

Time series data BiLSTM+FWPD RMSE=17.55W/m2, 

MAPE=2.65% 

Cong Feng et al. 

(2022)[21] 

Six year Cloud data CNN Forecasting skill improvement 

from 20 to 39% 

Samar Fatima et al. 

(2023)[22] 

Photovoltaic data Monte carlo Method Increment of solar photovoltaic 

generation by 40% 

Pardeep Singla et al. 

(2022)[28] 

Time Series data WT+LSTM MAPE=1.97% 

Zarei et al. (2023)[29] Grid data LSTM 20% increment in optimal 

demand response 

Mohit Bhargawa et al. 

(2023)[30] 

Weather conditions Bamboo cotton wick  Daily productivity of solar 

increased by 19% 

Stocia Dorel et al. 

(2022) [31] 

Wind data Offgrid PV wind fuel 

cell system 

Design best off grid system with 

backup facility 

Eyup Akpınar et al. 

(2018) [32] 

Photovoltaic data Snubber technique Design of high gain boost 

converter 

Li Pan (2023 )[33]  24 hour photovoltaic 

data 

ARO algorithm Maximize the profitibilty of 

photovoltaic data 

Although in the literature authors have used 

various approaches for forecasting but still some 

limitations can also be found;  

1) The current suggested model's accuracy in 

forecasting and adaptability for varying local 

environmental conditions in dealing with 

variable and intermittent irradiance 

measurements need to be enhanced further.  

2) There have been a few studies on how to use a 

suitable decomposition approach to include error 

minimization via stepwise forecasting in order to 

increase the model's forecasting accuracy.  

3) Since the volume of modal decomposition is 

uncontrollable, aliasing mode and pseudo-mode 

complications quickly arise, which slightly 

restrict the model's overall performance.  

4) In wavelet transformation, a technique 

commonly used in conventional research, the 

method of decomposition is greatly influenced 

by the experimentally chosen wavelet kernel. 

The dataset's suitability for the kernel has a direct 

impact on its forecasting accuracy. 

Accordingly, an innovative forecasting 

architecture of hourly stepwise prediction for solar 

energy by combining different models such as MLP, 

Bi-LSTM, CNN, along with error minimization and 

CEEMDAN decomposition to make a hybrid model 

(CEEMDAN-CNN-BiLSTM-MLP) was developed 

to further increase the model's reliability, 

adaptability, and suppression of interference 

capability.  

Thus, the purpose of this manuscript and its 

primary contribution are described below. 

 Unification of hybrid model: The distinctive 

unpredictable nature of the irradiance series is 

successfully handled by utilizing the unique 
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strengths of multiple models. In this article, 

DBN with a more rapid convergent rate has 

been utilized for sub-sequence with 

comparatively high-frequencies forecasting in 

the 2nd phase of progressive forecasting, along 

with the CNN-BiLSTM-MLP featuring the 

advantage of short-term as well as long-term 

retention.   

 Data partitioning: CEEMDAN signal pre-

processing techniques is implemented to 

decompose data into various IMFs and also 

remove mode mixing effect occurred in the 

traditional approach.  

 Error Minimization: In this study, the targeted 

rectification mistakes generated by the step-by-

step prediction scheme were used to further 

increase prediction accuracy. 

 Improvement of predicted results: The 

deviation between real values and target values 

is removed by adjusting the predicted values to 

get rid of deviation. The divided decomposition 

series are predicted by different-2 model. High 

frequency subseries given as an input to deep 

belief network while low frequency sub series 

are modelled by CNN-BiLSTM-MLP. The 

Prediction of different subseries using different 

model reduced mutual interference and improve 

comprehensive performance of the model. 

2. Proposed Architecture for Forecasting 

In order to address the irregular, significant 

fluctuations, and unpredictability associated with 

solar irradiance, this segment proposes an innovative 

forecasting system that integrates CEEMDAN, CNN-

BiLSTM-MLP and error minimization into a unified 

composite framework. Solar irradiance forecasting is 

split into two phases in this system, and the technique 

fully utilizes the integrated hybrid model's excellent 

anti-interference capability. Figure 1 displays the 

proposed framework of the developed system 

whereas Figure 2 describes the detailed process of 

proposed architecture from time irradiance series to 

analysing performance of the model. The brief 

overview of proposed framework is given below: 

 Error estimation step: As shown in Step 1 in 

Figure 1, Time-dependent original solar 

irradiance series, which mainly incorporates 

moisture content, GHI, temperature and 

airspeed are fed to CNN-Bi-LSTM-MLP model 

and then error is then estimated by comparing 

model’s output to the expected output and hence 

error series is created. 

 Error removal step: In step 2, the errors from 

step 1 are used to alter the final irradiance 

forecast. Initially, the testing dataset that was 

separated in the initial step will be the input 

dataset for the second step; it will be separated 

into learning and validation datasets into ratios 

of 40% and 20%. The training and test sets are 

deconstructed into low-frequency and high-

frequency components using the CEEMDAN 

approach. After that, the impact and distribution 

of the IMF's intrinsic components are presented. 

The low-frequency, high-frequency, and errors 

Time 
dependent 

original 
irradiance 

series

CEEMDAN

CNN-
BiLSTM -

model

Predicted 
values Predicted 

and real 
values 

difference

Error Series

Target   
values

Target 
values

CEEMDAN

High frequency 
IMFs

Deep belief 
Network

Predicted 
values

Low frequency 
IMFs CNN-

BiLSTM-
MLP model

Prediction 
Error series

Error 
correction

Final 
predicted 
values of 
irradiance

Error series

CNN-
BiLSTM-

MLP model

STEP 1 

Figure 1: Block Diagram of irradiance forecasting in step-wise manner.   

STEP 2 
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are fed to CNN-BiLSTM-MLP and Deep belief 

network for learning and finishing the 

forecasting. At last, the corrected solar 

energy predictions can be obtained by 

combining the correction errors with the solar 

energy predictions obtained from the model's 

output. 

 
Figure 2. Diagram of proposed structure for forecasting by utilizing integrated ensemble model along with error 

elemination and CEEMDAN signal processing techiniques. 

3. Methodology 

3.1. CEEMDAN 

As the solar radiation has variabilities, irregularities 

the data should be refined to efficiently forecast solar 

irradiance. In this manuscript CEEMDAN is used to 

break-down the data into periodic modes called 

(IMFs)intrinsic mode functions, the real data is 

broken down into fifteen IMFs. It is ideal for 

analysing the segmenting unpredictable and 

fluctuating attributes of near-instantaneous radiance. 

CEEMDAN decomposition outcomes on the time-

dependent solar irradiance series are presented in 

Figure 3. Here is how CEEMDAN works: 

1) At first there is addition of noise standard error 

(𝜑0) and Gaussian noise (𝜔𝑛) to the real time 

series (𝐼𝑠), given by 

𝐼𝑠
𝑛 = 𝐼𝑠 + 𝜑0 ∗ 𝜔𝑛;  𝑛 = 1,2 … … 𝑚                        (1) 

2) Decomposition of data by EMD is given by 

equation 

𝐼𝑀𝐹1 =  (
1

𝑚
) ∗ ∑ IMF1

k

m

k

                                           (2) 

𝑅1 = I𝑠 − 𝐼𝑀𝐹1                                                             (3) 
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Where, 𝐼𝑀𝐹1 is first intrinsic mode and 𝑅1 is residual. 

3) To obtain other IMFs following equations can be 

used 

𝐼𝑀𝐹𝑚+1 =  (
1

𝑚
) ∗ ∑ EMD1 ∗ (

m

k

𝑅𝑚 + 𝜑1𝐸𝑀𝐷1(𝜔𝑛) (4) 

𝑅𝑚 = R𝑚−1 − 𝐼𝑀𝐹𝑚                                                   (5) 

 

4) At last, the initial signal 𝐼𝑠 can be obtained by: 

𝑂𝑠 = ∑ 𝐼𝑀𝐹𝑘(𝑠) + 𝑅𝑠

𝑆

𝑘=1

                                              (6) 

Where, 𝑅𝑠 is final residual. 

 

  

  

  

  

  

  

 
 

  
Figure 3.  Outcomes of CEEMDAN decomposition.

3.2. CNN 

Convolutional Neural Networks (CNNs), a specific 

kind of neural network, have been developed 

specifically to handle structured input that resembles 

a grid. Although, it is proven that CNN is highly 

successful method for automatic feature extraction in 

computer vision domain, it is not only limited to this 

field but it can used where there is time series data 

such as in solar irradiance forecasting. Feature 

extraction equation for single dimensional is given 

by: 

𝑌𝑠 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (∑ 𝑊𝑡 ∗ 𝐼𝑠+𝑡 + 𝑏

𝑛−1

𝑡=0

)                        (7) 

Where, 𝑌𝑠 is output feature, 𝐼𝑠+𝑡 is input time series, 

𝑊𝑡 are weights, b is bias and σ is activation function. 

3.3. Bi-LSTM 
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Bi-LSTM contains one forward LSTM and one 

backward LSTM model which enables Bi-LSTM 

model to process twice the data that LSTM model can 

process as shown in Figure 4. It is capable of 

modelling time series data of solar radiation and 

associated factors, determining their correlations, and 

finally producing accurate forecasts. unlike LSTM it 

not only uses the past data but also depends upon the 

future values which leads to better learning of model 

and minimum error between actual and forecasted 

values. However, the performance of the model 

depends on the nature of the problem at hand, as well 

as the quantity and quality of the training data. 

𝐻𝑓 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊1 ∗ 𝑆𝐼𝐼(𝑡) + 𝑊2 ∗ 𝐻(𝑓−1) + 𝑎𝐻𝑓
) 

 (8)

 
𝐻𝑏 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊3 ∗ 𝑆𝐼𝐼(𝑡) + 𝑊5 ∗ 𝐻(𝑏−1) + 𝑎𝐻𝑏

) 

(9) 

𝑆𝐼𝑜 = 𝑊4 ∗ 𝐻𝑓 + 𝑤6 ∗ 𝐿 + 𝑎𝑆𝐼𝑂
                              (10) 

 
Figure 4. Block diagram of Bi-LSTM approach. 

3.4. DBN 

It is a widely recognized and efficient neural network 

approach, comprising multiple layers of 

interconnected also known as Deep belief network. It 

is made up of several layers of stochastic, latent 

variables (hidden layers). The design comprises of a 

feed stage, many hidden stages, and an output stage, 

each of which is completely linked to the one above 

it but not to the levels below it. High frequency sub-

sequences in the step-2 are decomposed by 

CEEMDAN algorithm is accomplished by utilizing a 

DBN with three hidden layers. 

DBN model in terms of Energy function is given by: 

𝜀(𝑣, ℎ) = − ∑ 𝑎𝑙𝑣𝑙 − ∑ 𝑏𝑚𝑣𝑚 − ∑ 𝑣𝑙ℎ𝑚𝜔𝑙,𝑚

𝑙,𝑚𝑚𝑙

 

(11) 

Where, 𝑎𝑙 and 𝑏𝑚 are bias of the visible and hidden 

unit, 𝜔𝑙,𝑚 is bias between hidden and visible unit, ‘v’ 

and ‘h’ are visible and hidden unit. 

4. Performance Metrics 

To evaluate the model’s performance that how much 

deviation is there between Real and Predicted values 

some evaluation parameters should be used. Here in 

this manuscript RMSE: Root Man Square Error, 

MAE: Mean Absolute Error, 𝑅2: determination 

coefficient and n-RMSE: Normalized Root Mean 

Square Error are used. 

𝑅𝑀𝑆𝐸 =  √
1 ∗  ∑ [𝑇𝑠 − 𝑃𝑠

𝑡
𝑠=1 ]2

𝑡
                             (12) 

𝑛𝑅𝑀𝑆𝐸 =  
1

𝑃𝑠𝑚𝑒𝑎𝑛

√
1 ∗  ∑ [𝑇𝑠 − 𝑃𝑠

𝑡
𝑠=1 ]2

𝑡
              (13) 

𝑀𝐴𝐸 = (
1

𝑡
) ∗ ∑[𝑇𝑠 − 𝑃𝑠]

𝑡

𝑠=1

                                     (14) 

𝑅2 = 1 −
∑ [𝑇𝑠 − 𝑃𝑠]2𝑡

𝑠=1

∑ [𝑇𝑠 − 𝑃𝑠]𝑡
𝑠=1

                                        (15) 

5. Data Description 

This manuscript includes time series data of GHI 

component of solar irradiance of location New Delhi 

and Ahmadabad; as per the Koppen classification of 

climate both these locations have mixed climate that 

have four seasons; summer, monsoon, winter, 

autumn. Dataset of solar irradiance of these locations 

is taken from NSRDB (National solar radiation 

database) for the period of four years; (2009-2014). 

Apart from the pre-processing of data, deep neural 

network hyperparameters should also be defined for 

the better accuracy. To select the optimum values of 

hyperparameters the data is split into three categories; 

training, testing and validation. In this research data 

is split into ratio of 75:25, that is 75% data is used for 

training and validation and 25% data is used to test 

the developed model’s performance.  

     Table 2 summarises the necessary information 

from these collected datasets. Figure 5 depicts a 

graphical representation of the data. 
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Table 2. GHI Statical data for both locations. 

Location 
Summer Monsoon Winter Autumn Annual 

Mean SD Mean SD Mean SD Mean SD Mean SD 

New Delhi 664.6 220.14 595.39 217.79 389.56 194.73 470.02 189.4 541.13 233.99 

Ahmadabad 722.99 200.44 580.8 223.85 502.2 197.8 532.87 195.83 593.95 221.62 

 

 
Figure 5. Graphical representation of extracted features of New Delhi data.

5.1. Hyperparameter 

There are no rules or restrictions of any kind to 

choose the hyper-parameter in the literature survey. 

By altering the parameter values within a specific 

range, the hyper-parameter may be selected. The grid 

search approach is used in this research to extract the 

hyper-parameters for the models from the learning 

and validation dataset. Table 3 shows the selection of 

a hyper-parameter within a specific range. Figure 6 

depicts the process flow chart of the hyper-parameter 

selection procedure.  

 
Figure 6. Flow diagram of process of hyper-

parameter selection. 

The rules for choosing hyperparameters are as 

follows: 

 Set the initial hyperparameter's default value. 

 Choose the appropriate activation function. 

 Select the ideal batch count and epoch value. 

 Choose a suitable optimizer. 

 Select the suitable hidden unit value. 

 Choose the ideal drop rate. 

Table 3. Hyper-parameters 

Model Hyper 

parameter 

Hyper 

parameter 

search 

space 

Optimized 

values 

CNN-

BiLSTM- 

MLP 

Hidden 

unit 1 

[100-800] 200 

Hidden 

unit 2 

[100-600] 200 

Activation 

function 

[ReLU, 

Tanh] 

ReLU 

Epochs [50-200] 100 

Optimizer [Adam, 

RMSprop] 

Adam 

Batch 

count 

[10-12] 12 

Drop rate [0.1-0.3] [0.1] 
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6. Result 

This manuscript includes evaluation of the efficacy of 

hybrid neural network using data from New Delhi and 

Ahmedabad from 2009-2014, focusing on training 

and validating a proposed prediction algorithm. In 

step 2, the following five distinct decomposition 

techniques were used: WPD, CEEMDAN, 

CEEMDAN_IMF_6, CEEMDAN_IMF_12, 

CEEMDAN_IMF_18, EEMD, no decomposition 

technique (abbreviated as None). Table 4 shows the 

fundamental parameter values for framework 

learning after training. Figures 7,8 show the 

comprehensive and regional forecasted outcomes 

of both datasets. 

 

Table 4. Essential configurations to train model. 

Techniques 
Initial 

inputs 
 Model  

(Step-1) 
Step 2 inputs  Model (Step-2) 

    
Error 

sequence 

Low-

frequency  

High- 

frequency 

None 
𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

EEMD 
𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

WPD 
𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

CEEMDAN 
𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

CEEMDAN

_IMF_6 

𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

CEEMDAN

_IMF_12 
𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

CEEMDAN

_IMF_18 

𝑁 ∗ 24
∗ (1 ∗ 5) 

Model-1 
Errors, decomposed 

Intrinsic components 
Model-1 Model-1 DBN 

 

 

Figure 7. New Delhi forecasting graph. 
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Figure 8. Ahmedabad forecasting graph 

Table 5. Final annual performance outcome of both the datasets. 

Location Delhi Ahmedabad 

Performance matrix RMSE n-RMSE MAE R2 RMSE n-RMSE MAE R2 

Method 

Persistence 102.7 57.42 64.82 81.87 114.6 47.89 71.04 86.56 

None 67.65 33.9 29.86 92.41 45.65 20.15 19.8 96.2 

EEMD 59.96 31.42 33.32 93.58 40.67 18.36 21.34 96.43 

WPD 33.93 16.72 11.97 97.25 28.93 12.85 14.22 99.12 

CEEMDAN 35.41 18.25 18.74 97.16 30.16 18.25 14.99 99.41 

CEEMDAN 

_IMF_6 
38.79 20.04 21.1 96.98 29.54 13.04 16.1 98.98 

CEEMDAN 

_IMF_12 
18.72 10.41 12.46 98.38 14.47 6.16 9.21 99.38 

CEEMDAN 

_IMF_18 
16.58 9.63 10.6 98.89 9.85 4.63 6.61 99.52 

Forecasting on Delhi Data: As depicted in Figure 7, 

the Delhi data shows the greatest degree of data 

variability and data volume. Despite the fact that 

Delhi dataset’s outcomes had not been the most 

favorable among the two data sets, but still the 

deviation between corrected forecasted values and 
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Figure 9. Evaluated performance New Delhi dataset. 
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target values are minimum as depicted in Figure 7 

results is acceptable performance of developed 

model. In the second step of the analysis, after 

radiance from sun is broken-down into 18 intrinsic 

components, from the Table 4 the associated RMSE 

is 16.58 W/m2, the normalized RMSE stands at 

9.63%, the MAE is 10.6 W/m2, and the R-squared 

(R2) value is impressively high at 98.89%, using the 

proposed forecasting model.  

Forecasting on Ahmedabad data:  Ahmedabad data 

shows the least degree of data variability and 

data volume among both the dataset and is 

considerably better than Delhi’s forecasting as shown 

in Figure 8. After analyzing the performance of model 

using Ahmedabad data with 18 sub-series 

decomposition, it is clear that this dataset gives better 

outcomes in all perspectives with RMSE equals to 

9.85 W/m2, normalized RMSE is 4.63%, MAE stands 

at 6.61W/m2 and the R-squared (R2) is at 99.52% as 

mentioned in Table 5.

 

 
Figure 10. Evaluated performance of Ahmedabad dataset. 

 

7. Comparison analysis of the results 

In order to compare the performance of the developed 

model, persistence model is generally used as 

benchmark model. In this manuscript, developed 

model’s performance with both the dataset are 

individually compared with the persistence model 

along with evaluation of improvement percentage 

based on Table 5 data and persistence model. Table 8 

shows the percentage improvement of the most 

efficient model over persistence model. 

7.1. Analysis of local prediction and influence 

To examine the results in more depth, Figure 11 

presents a visual representation of the true and 

predicted Global Horizontal Irradiance for three 

successive days, spanning from April third to the 

sixth and September third to the sixth. These two 

months have been chosen to demonstrate the results 

due to extreme outcomes as in April RMSE is 

minimal and maximum in September. For better 

understanding, these two months are chosen to show 

the graph of true and predicted GHI of developed 

model. Figure 11 clearly shows that the significant 

fluctuations in the true GHI curve resulted in higher 

inaccuracies in the outcomes. For example, April 

exhibits a smooth curve because of sunny weather, 

which the developed framework can effortlessly 

track. In contrast, the true GHI fluctuates 

occasionally in September as there are clouds and 

rains causing highest performance drop as it is 

difficult to track. This leads to the observation that 

there is a decline in resemblance between the 

true and forecasted GHI as fluctuations increase in 

true GHI; vice versa, resemblance will improve 

when fluctuations decrease. However, the 

developed framework also accounts for the 

ambiguities present in the true GHI within tolerable 

variations. Consequently, such findings suggest the 

proposed framework is an effective prediction tool 

for all climates. 

 
Figure 11. Performance of developed approach. 

7.2. Evaluation of various seasons performance 

and study of prediction error 
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To advance the models annual prediction 

performance by strengthening the model's complete 

ability to predict outcomes in subsequent 

investigations. In this study, forecasting impacts of 

two datasets with different seasonal conditions are 

examined in-depth individually. Below is a 

description in more detail. 

7.3. The Delhi dataset's performance evaluation 

findings for various seasons are as follows: 

The associated outcome evaluation indicators have 

been measured separately using several predictions 

approaches due to the Delhi dataset's relatively 

significant variability. Based on the estimated results, 

it is clear that the data set possesses comparatively 

higher level of fluctuations in fall and summertime, 

and a lower level of fluctuation in the winters and 

springtime when the solar irradiance data are not 

decomposed. The performance metrics calculated 

using the prediction approach presented in this 

research are the best-case scenarios. In Table 6 the 

outcome evaluations for different seasons are 

displayed. 

Table 6. Seasonal performance of New Delhi data using different signal processing techniques. 

Seasons 
Performance 

matrix 

Method 

None EEMD WPD CEEMDAN 
CEEMDAN 

_IMF_6 

CEEMDAN 

_IMF_12 

CEEMDAN 

_IMF_18 

Spring 

RMSE 52.17 53.67 26.48 22.31 29.38 16.49 15.21 

n-RMSE 34.70 35.12 17.21 14.41 19.08 11.20 9.71 

MAE 22.45 28.05 8.54 11.90 16.06 10.68 9.26 

R2 93.12 93.09 97.49 97.93 97.18 98.34 98.43 

Summer 

RMSE 89.10 74.64 41.69 48.58 48.21 22.02 18.65 

n-RMSE 33.78 29.11 16.00 19.84 19.18 8.16 7.82 

MAE 39.78 43.55 14.43 24.74 25.95 14.14 11.81 

R2 91.14 93.47 97.21 96.60 96.75 98.49 98.32 

Autumn 

RMSE 88.21 65.41 47.45 48.54 49.28 21.89 18.49 

n-RMSE 36.15 26.68 19.21 21.24 21.56 9.54 8.14 

MAE 39.91 36.59 17.43 25.87 27.54 15.06 11.89 

R2 90.63 94.12 96.41 96.45 96.35 98.31 99.34 

Winter 

RMSE 41.14 46.12 20.11 22.21 28.31 14.50 13.98 

n-RMSE 31.00 34.78 14.49 17.52 20.37 12.77 12.87 

MAE 17.31 25.12 7.51 12.48 14.86 9.96 9.45 

R2 94.75 93.64 97.89 97.67 97.67 98.40 99.49 

Annual 

RMSE 67.65 59.96 33.93 35.41 38.79 18.72 16.58 

n-RMSE 33.90 31.42 16.72 18.25 20.04 10.41 9.63 

MAE 29.86 33.32 11.97 18.74 21.10 12.46 10.60 

R2 92.41 93.58 97.25 97.16 96.98 98.38 98.89 

 

7.4. The findings of the Ahmadabad dataset 

performance evaluation in several seasons 

are as follows: 

The associated outcome evaluation indicators have 

been measured for Ahmadabad data which has less 

variation than the Delhi data. Based on the calculated  

 

results, it is simple to see that the dataset's volatility 

is mainly indicated in fall season and comparatively 

have more forecasting error and winters and spring 

season have comparatively low fluctuations. Table 7 

display the various seasonal performance evaluation 

indicators that were computed. 

Table 7. Seasonal performance of Ahmadabad data using different signal processing techniques. 

Seasons 
Performance 

matrix 

Method 

None EEMD WPD CEEMDAN 
CEEMDAN 

_IMF_6 

CEEMDAN 

_IMF_12 

CEEMDAN 

_IMF_18 

Spring 

RMSE 42.17 52.67 26.48 27.31 29.38 13.49 7.21 

n-RMSE 22.70 27.12 14.21 14.41 15.08 6.20 3.71 

MAE 19.45 28.05 13.54 14.90 16.06 8.68 4.31 

R2 95.12 96.52 98.98 98.93 98.18 99.34 99.43 

Summer 

RMSE 32.10 24.64 25.69 25.58 24.21 15.02 9.65 

n-RMSE 9.78 6.86 7.48 7.84 7.18 4.16 3.82 

MAE 13.78 13.62 14.41 15.74 13.96 10.14 7.81 

R2 98.14 93.47 99.21 99.60 99.75 99.49 99.82 

Autumn 
RMSE 72.21 53.25 40.45 48.54 39.28 16.89 13.59 

n-RMSE 25.15 16.68 14.21 38.24 13.56 5.54 5.14 
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MAE 30.91 28.59 17.43 19.87 20.54 10.06 8.89 

R2 93.63 98.12 99.41 99.45 99.35 99.31 99.34 

Winter 

RMSE 36.14 32.12 23.11 19.21 25.31 12.50 8.98 

n-RMSE 23.00 22.78 15.49 12.52 16.37 8.77 5.87 

MAE 15.08 15.12 11.51 09.48 13.86 7.96 5.45 

R2 97.91 97.64 98.89 99.67 98.67 99.40 99.49 

Annual 

RMSE 45.65 40.67 28.93 30.16 29.54 14.47 9.85 

n-RMSE 20.15 18.36 12.85 18.25 13.04 6.16 4.63 

MAE 19.80 21.34 14.22 14.99 16.10 9.21 6.61 

R2 96.2 96.43 99.12 99.41 98.98 99.38 99.52 

 

7.5. Percentage Improvement 

Percentage improvement is one more criterion used 

to determine a superior model from other options and 

Table 8 shows the performance improvement of 

different models to the persistence model. Percentage 

improvement can be calculated as: 

𝑃𝑖 =  
|𝑖𝑝𝑒𝑟 − 𝑖𝑚|

𝑖𝑝𝑒𝑟

                                                        (16) 

Where, ‘𝑖’ is the metrics used such as 𝑅2, 𝑅𝑀𝑆𝐸,
𝑛𝑅𝑀𝑆𝐸 𝑎𝑛𝑑 𝑀𝐴𝐸 and ‘m’ represents different 

models used and ‘per’ is persistence model. 

Table 8. Performance improvement of different models compared to persistence model. 

 

8. Comparison existing models 

Moreover, to assess the effectiveness of the strategy 

suggested in this work more thoroughly and 

objectively. With the plan of this work, some systems 

that have been offered in recent years are likewise 

validated. Error! Reference source not found. 

provides a more intuitive illustration of it. In 

comparison to some research that have been reported 

in the literature, the proposed model yields 

encouraging results.

Table 9. Existing model comparisons. 

Author and year of 

publication 
Models Region 

Time 

horizon 

RMSE(W/

m2) 

MAPE 

(%) 

Zang et al,2020 

[15] 
CNN and LSTM Texas, USA 1-hr 69.26 - 

Li et al, 2021 

[19] 
BiLSTM United State 1-hr 98.44 - 

Singla., et al, 2021 

[28] 
WT-BiLSTM Ahmadabad 24-hr 45.61 6.48 

Gupta, A., et al 

2022 [34] 
EEMD-GA-LSTM New Delhi 1-hr - 3.23 

Gupta, A., et al 

2022 [35] 
CEEMDAN, GA and BiLSTM New Delhi 1-hr - 2.23 

This Work 
CEEMDAN-CNN-BiLSTM-

MLP (Proposed Model) 

New Delhi, 

Ahmedabad 
1-hr 13.215 1.878 

Percentage 

improvement 
Dataset None EEMD WPD CEEMDAN 

CEEMDAN 

_IMF_6 

CEEMDAN 

_IMF_12 

CEEMDAN 

_IMF_18 

𝑷𝑹𝑴𝑺𝑬 

Delhi 34.12 41.61% 66.96% 65.52% 62.22% 81.77% 83.85% 

Ahmedabad 60% 64.51% 74.75% 73.68% 74.22% 87.37% 91.4% 

𝑷𝒏𝑹𝑴𝑺𝑬 

Delhi 40.96% 45.28% 70.88% 68.21% 64.99% 81.87% 83.22% 

Ahmedabad 57.92% 61.66% 73.16% 61.18% 72.77% 87.13% 90.33% 

𝑷𝑴𝑨𝑬 

Delhi 53.93% 48.59% 81.53% 71.08% 67.44% 80.77% 83.64% 

Ahmedabad 72.12% 69.96% 79.98% 78.89% 77.34% 87.04% 90.69% 

𝑷𝑹𝟐
 Delhi 12.87% 14.3% 18.78% 18.67% 18.45% 20.17% 20.78% 

Ahmedabad 11.14% 11.4% 14.51% 14.84% 14.34% 14.81% 14.97% 
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9. Conclusion 

This work proposes a hybrid forecasting model that 

addresses the issue of poor reliability and 

adaptability of forecasting methods used for solar 

energy forecasting. It uses the integrated ensemble 

model CNN-BiLSTM-MLP along with error 

minimization and CEEMDAN for forecasting solar 

energy for the next hour. In this research, the 

CEEMDAN technique is employed in the second 

phase of the prediction process to break down the 

irradiance dataset. Furthermore, only time series data 

were taken into consideration in the study; structured 

datasets may potentially be integrated with time 

series data to improve performance. This approach 

effectively tackles the challenge posed by the 

considerable noise and variability in solar irradiance 

data. Traditional preprocessing techniques struggles 

with managing several decomposition modes in such 

noisy data, leading to issues like aliasing when under-

resolution misleading clusters when over-resolution. 

By evaluating thoroughly, the proposed framework 

showed better reliability and accuracy in comparison 

to currently developed approaches when evaluated 

using datasets from Delhi and Ahmedabad. The ideal 

prediction system (in this case CEEMDAN_IFM_18) 

reduces RMSE, n-RMSE, and MAE by 13.215 W/m2, 

7.13%, and 8.605 W/m2, respectively on average, and 

increases R2 by 17.875% when compared to the 

persistent model. 

Beside the fact that this model outperforms other 

currently developed models for next hour forecasting 

but because of the challenging nature of climate 

variations in winters and monsoon, this proposed 

framework predicts irradiance based on previous 

irradiance data and can struggle tackle sudden 

variations effectively. Future work will include more 

parameters such as visibility, live climate data which 

will further improve the accuracy and adaptability 

and will be able to do long hour forecasting. 

 

Nomenclature 

GHI Global horizontal irradiance 

𝐼𝑠 Real time series 

𝜑0 Standard error 

𝜔𝑛 Gaussian noise 

𝐼𝑀𝐹1 First intrinsic mode 

𝑅1 Residual 

𝑅𝑠 Final residual 

SII Input layer 

Hf Forward hidden laver 

Hb Backward hidden layer 

SIo Output layer 

𝜀(𝑣, ℎ) Energy function 

RMSE Root-mean square error 

n-RMSE Normalized root-mean square error 

MAE Mean absolute error 

R2 Determination coefficient 

SD Standard deviation 

Pi Percentage improvement 
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