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Abstract  

By adding renewable energy sources, such as solar and wind, advanced metering infrastructure, and energy storage 

systems, the traditional power grid is becoming a smart grid. To prevent the uneconomic operation of a smart grid 

and increase the penetration of renewable resources, the Demand Response (DR) method is crucial for reducing 

the peak load and passing critical conditions. In this context, this study presents a multi-objective optimization of 

the AC optimal power flow (AC-OPF) problem with respect to DR. The novelty of the proposed demand-

response-based OPF approach consists of decreasing the system cost through the simultaneous participation of 

active and reactive power in DR, considering the physical constraints of the AC network and various renewable 

energy sources in the smart grid, and increasing the calculation accuracy by demand prediction based on previous 

data using deep learning methods. Finally, using the TOPSIS method, the best DR value was determined according 

to multi-objective optimization. The effectiveness and resiliency of the proposed method were validated using a 

modified IEEE 24-bus testing system. The results illustrate that the optimal demand response (20%) achieved not 

only peak reduction and valley filling in active and reactive power but also minimized the total voltage deviation 

and system cost.     
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1. Introduction  

     In the last few years, the conventional power grid 

has been redesigned into a smart, highly efficient, 

and fully integrated system, the so-called smart grid 

(SG). Conventional electricity consumers have 

become prosumers who can produce and consume 

electricity with the development of Distributed 

Energy Resources (DERs) such as Photovoltaics 

(PV), Energy Storage Systems (ESS), Electric 

Vehicles (EV) [1], smart meters, and future 

electricity needs [2]. Only three renewable energy 

sources ( biomass, geothermal, and solar) can be 

used to generate sufficient heat energy for power 

generation [3].  Of these, solar energy exhibits the 

highest global potential because geothermal sources 

are limited to a few locations, and the supply of 

biomass is not ubiquitous in nature [4]. In addition, 
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noise effects near populated areas [5], low 

robustness, narrow wind speed range, and low 

output power of current small-scale wind energy 

harvesters [6] are disadvantages of wind energy. 

During the last decade, a significant decrease in the 

price of renewable energy sources, where the cost of 

PV has decreased by 90%  [7], has led to more use 

of solar energy. Mbachu et al. [8] conducted an 

economic analysis and comparison between a solar 

photovoltaic system and fossil fuel-powered 

electricity generators in the Awka University 

campus, and the results showed that optimization 

(minimization) of the electricity load reduced the 

initial acquisition and installation cost of the solar 

photovoltaic system, which is more economical than 

fossil fuel-powered electricity generators. Solar 

energy is an abundant renewable energy source that 

can provide energy with high security values. This 

energy source is freely available in many regions of 

the world, especially in the Middle East and North 

Africa [9].  

     Demand side management (DSM) is an important 

function in a smart grid that allows customers to 

make informed decisions regarding their energy 

consumption and helps energy providers reduce the 

peak load demand and reshape the load profile [10]. 

DSM methods can be classified into energy response 

(energy efficiency and conservation (EEC)) and 

demand response (DR) [11]. Demand Response 

(DR) is considered the most cost-effective and 

reliable solution for smoothing the demand curve 

when the system is under stress [12]. Generally, the 

peak load of the electricity network occurs during 

the hot months of the year owing to the operation of 

cooling systems. The increased demand for 

electricity may require an uneconomical ramp-up of 

expensive generators, resulting in increased real-

time electricity prices, which can be as high as 100 

times the average value. In such cases, load-serving 

entities (LSE) who buy energy in the wholesale 

power market and dispatch it to residential (or 

commercial) consumers may have to procure energy 

at very high prices [13]. To prevent the uneconomic 

operation of the power grid, the Demand Response 

(DR) method was used to reduce the peak load and 

pass critical conditions. In addition, the need to build 

expensive new power plants has been eliminated or 

delayed. It can be expected that demand response 

will be an important stepping stone toward the 

practical deployment of smart grids [14].  DR 

options are generally categorized into price-based 

demand response (PBDR) and incentive-based 

demand response (IBDR) programs [15]. As 

described in Figure 1, All the PBDR programs are 

voluntary; however, the IBDR programs include 

voluntary programs, mandatory programs, and 

market clearing programs [16]. Along with DR 

methods, the load shedding method is also 

mentioned; for example, Ahmadipour et al. [17] 

proposed an optimal load shedding method using an 

optimization algorithm to maintain the stability of an 

islanded power system that comprises distributed 

energy resources (DER). In addition, under 

emergency conditions, load shedding is considered 

the most effective approach to maintain the power 

balance and stability; however, the DR methods are 

more favorable than the load shedding method 

because in the DR, only the time of load 

consumption is shifted, but in load shedding, a part 

of the load must be interrupted. 

 

        Figure 1. Demand response categories  

    The AC Optimal Power Flow (AC-OPF) is a 

nonconvex optimization problem, where the 

objective is to minimize the cost of generation 

subject to power balance constraints described by 

Kirchhoff’s current and voltage laws and operational 

constraints reflecting real and reactive limits on 

power generation, bus voltage magnitudes, and 

power flows along transmission lines [18]. The 

nonconvexity of the OPF problem is due to the 

quadratic equations of the AC network.  The 

treatment of such non-convexities in ACOPF has 

traditionally relied on the use of local constrained 

optimization methods, or convex relaxation and 

linear approximation methods [19], where DC 

Power Flow denotes the linearization form of the 

original AC Power Flow equations. Compared to the 

DC-OPF formulation, the benefits of the AC 

Optimal Power flow (AC-OPF) are (i) increased 

accuracy, (ii) considered voltage, (iii) considered 

reactive power, (iv) considered currents, and (v) 

considered transmission losses [20]. The linear 

optimal power flow (LOPF) method is more suitable 

than the DCOPF in the distribution network because 

the problem of a lack of voltage range and 

subsequently reactive power in the DCOPF has been 

solved. In addition, LOPF models are 
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computationally inexpensive, but their solutions fail 

to satisfy AC power flow constraints [21]. The 

results obtained using the AC-OPF were more 

accurate [22].   

     In smart grids and microgrids, different objective 

functions (OFs), such as active power generation 

cost, reactive power generation cost, power supplied 

to the grid from an external utility, active power 

losses, carbon emissions, load curtailment, tap 

position and capacitor bank switching, social 

welfare, reserve cost, and load adjustment, are 

considered in the optimal power flow (OPF) [22]. 

Few studies have been conducted on demand 

response (DR) based on AC optimal power flow 

(OPF) analysis. Jabari et al. [23] present the 

integration of the AC optimal power flow (AC-OPF) 

problem with demand response programs (DRPs). A 

time-value-based demand-shifting strategy was used 

to reduce the peak load and shift this value to other 

mid- and low-demand hours. In this method, the 

effect of reactive power changes in the DR is not 

considered. Haggi et al. [24] proposed DR modeling 

in Active Distribution Networks (ADN) by 

considering both active and reactive power shifting 

while preserving the power factor of each load. Shi 

et al. [25] investigated the joint coordination of 

demand response and AC optimal power flow with 

curtailment of renewable energy resources. An 

ADMM-based DMPC algorithm was used to predict 

the future power demand. Yao et al. [26] proposed a 

multiperiod optimal power flow (OPF) approach that 

uses DR to improve steady-state voltage stability to 

improve voltage stability in transmission networks. 

Both [25] and [26] have complicated execution 

methods, and their execution times are long. To 

mitigate the overvoltage over network buses in high-

power systems with high PV-penetrated penetration, 

Heidari Yazdi et al. [27] proposed an active power 

curtailment (APC) and reactive power control 

method applied to buses with PV inverters. The 

demand response (DR) program is employed using 

load-shifting techniques to move a portion of the 

load from peak hours. This method is only 

applicable to buses with PV and to prevent 

overvoltage, and it is not considered a 

comprehensive method to be implemented for the 

entire smart grid. Merrad et al. [28] proposed a fully 

decentralized architecture for an OPF-based demand 

response management system  by mathematical 

modelling that uses smart contracts to force 

generators to comply without the need for a central 

authority. However, the execution cost is related to 

the number of provers participating in the smart 

contract, because of the requirement to loop the 

smart contract through all provers.  

     The main contributions of this paper can be 

summarized as follows: (1) an Optimal Demand 

Response-based OPF formulation is proposed for 

total cost reduction and peak shaving in the smart 

grid ; (2) to increase the accuracy of future electrical 

load prediction using previous consumption data, the 

LSTM method is used; (3) the proposed problem 

consists of various types of generating power units 

and ESS; (4) in addition to active power, reactive 

power is also considered in the proposed demand 

response program; (5) to compare the various cases 

of demand response problems and select the optimal 

point TOPSIS method used.  

     The remainder of this paper is organized as 

follows: Section 2 presents methodology containing 

Description of the problem, demand prediction, the 

problem formulation and demand response program. 

Section 3 analyzes the case studies and data. Section 

4 reports the simulation results for the modified 

IEEE 24-bus test system. Finally, the main 

conclusions of this study are presented in section 5. 

2. Methodology 

2.1 Description of the problem  

      The aim of the DR-OPF problem is to optimize 

the objective functions while simultaneously 

satisfying a set of equality and inequality constraints 

at the same time by considering the DR. In this 

problem, the electrical load predicted by the LSTM 

method and schematic solar/wind power generation 

were added as inputs to the optimization problem. 

The optimization problem is solved in various steps 

of DR. Subsequently, the objective functions of the 

aforementioned steps are compared to select the best 

operation point.  

2.2. Demand prediction  

Demand forecasting is an essential factor in the 

operation and planning of energy production and 

distribution systems. If the energy consumption is 

overestimated, idle production capacity is designed, 

and the consumption cost of all subscribers will 

increase without a valid reason. However, 

underestimating energy consumption has negative 

economic and social impacts such as blackouts and 

brownouts [29]. Electrical Energy Demand (EED) 

forecasting techniques can be clustered into three 

(3), namely correlation, extrapolation, and a 

combination of both [30]. Different load forecasting 
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models can be broadly classified into engineering 

methods (correlation) and data-driven methods 

(extrapolation or Artificial Intelligence) [31]. In 

engineering methods, parameters, such as 

temperature and weather, are used to calculate the 

amount of energy consumed. However, in data-

driven methods, the load consumption information 

from previous periods is used to predict future 

consumption. 

Machine learning is a subsection of Artificial 

Intelligence (AI) that imparts the system; the 

benefits of automatically learning from concepts and 

knowledge without being explicitly programmed 

[32]. Depending on how an algorithm is being 

trained and based on the availability of the output 

during training, machine learning paradigms can be 

classified into ten categories [33], and the artificial 

neural network (ANN) is one of these categories. In 

an artificial neural network (ANN) system, the 

amount of information is increased using learning 

algorithms, and as a result, the efficiency of the 

educational process is improved. This process is 

called deep learning because the number of layers of 

the neural network increases over time. Owing to the 

greater number of layers, machine learning is also 

known by other titles such as deep structured 

learning and hierarchical learning. The deep learning 

method was performed in two modes: supervised 

and unsupervised. 

    To forecast the electrical demand, hourly data for 

one month (from August 19 to September 19, 2022) 

for New Zealand [34], including active and reactive 

power, were used. The deep neural network 

architecture is of the long short-term memory 

(LSTM) type, which is suitable for predicting time 

series.  MATLAB software was used to implement 

the LSTM problem. In this problem, 90% and 10% 

of the information is used for training and test data, 

respectively. The Training option settings including 

'MaxEpochs,’ ‘GradientThreshold,’ 

‘InitialLearnRate,’ ‘LearnRateDropPeriod,’ and 

'LearnRateDropFactor' are set to 250, 1, 0.005, 125, 

and 0.2, respectively. After training the deep neural 

network and improving the predictions, the state of 

the network was updated using real values. The 

normal and improved modes of the LSTM deep 

learning are shown in Figures 2 and 3, respectively. 

     The root-mean-square error (RMSE) and mean 

absolute error (MAE) were used to evaluate the load 

prediction performance. The values of RMSE and 

MAE in the normal mode, were 398.1 and 292.5, 

respectively, and those in the improved mode were 

57 and 292.5, respectively. It can be seen that the 

correlation between the predicted and observed 

values increased significantly after updating the 

deep neural network, and the root mean square error 

(RMSE) value decreased significantly. For 

simplicity, a 24-hour load forecast was applied to all 

the load buses. 

 

 
        Figure 2. Normal LSTM load prediction  

 

 
        Figure 3. Modified LSTM load prediction 

2.3. Problem formulation  

The objective functions of the problem and its 

constraints are as follows: 

A. Objective Functions 

1) Cost Function 

The cost function consists of active and reactive 

generation costs, the cost of load shedding, and the 

wind/solar curtailment cost [35], [36]. 

 

1 , , ,

,

, ,

, ,

g g LS

g i t g i t i t

i t

WC SC

i t i t

i t i t

OF b P c Q VOLL P

VOLW P VOLS P
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  



 
 (1) 

where bg, cg, Pi,t
g, Pi,t

LS, Pi,t
WC, and Pi,t

SC are the fuel 

cost coefficients of active power generation at unit g, 
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reactive power generation at unit g, power 

generation of unit i at time t, Active Load shedding 

in bus i at time t, and wind and solar curtailment in 

bus i at time t, respectively. In the objective 

function, the quadratic cost of the power plants is 

approximated using a first-order function. VOLL is 

the value of load loss according to the graph of wind 

and demand changes, which is considered a penalty. 

Similarly, VOLW/VOLS is the cost factor for 

reducing wind/solar energy production in wind/solar 

power plants according to the graph of wind/solar 

and demand changes. According to [36] and [37], 

nodal reactive power pricing is another way to 

design a price structure. This is the sensitivity of the 

generation production cost to the reactive power 

demand and is usually computed by the OPF. The 

cost of reactive power is approximately one percent 

of the cost of active power. Therefore, in the 

objective function, one percent of the active power 

production cost coefficient is applied as a coefficient 

related to reactive power generation cg=0.01bg. 

  2) Voltage Deviation Function (VDF) [38] 

2

,

slack i

i t

OF V V   
(2) 

where the voltage deviation function is applied to 

improve the voltage profile and power quality, Vi is 

the voltage at bus i, and Vslack is equal to one in this 

study. 
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
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   This objective function calculates the amount of 

peak load reduction after demand response compared 

to the normal state as a percentage. 

B. Active and Reactive Power Relationships 

The active and reactive power relationships in 

the AC network are as follows [40]:  
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(5) 

C. Power Balance Constraints 

    At time step t, the balance of the active and 

reactive power in all buses is given by.  

 , , , , , ,

, , ,:
i

g LS W S ch dch

i t i t i t i t i t i t

L P

i t ij t i t

j

P P P P P P

P P 


      

  
 (6) 

, , , , , ,:
i

g LS W L q

i t i t i t i t ij t i t

j

Q Q Q Q Q 


    
 

(7) 

where Pi,t
L is the electric demand on bus i at time t. 

Qi,t
W is the reactive power generated by the wind 

turbine connected to bus i at time t.  

D. Thermal Power Plant Constraints 

   The maximum and minimum values of the active 

and reactive fossil power plants and their ramp 

up/down rate constraints are as follows [41], [35]: 
,min ,max

, , ,

g g g

i t i t i tP P P   (8) 

,min ,max

, , ,

g g g

i t i t i tQ Q Q 

 

(9) 

, 1 ,

g g

i t i t gP P RU    (10) 

, 1 ,

g g

i t i t gP P RD  

 
(11) 

E. Load Shedding Constraints  

, ,0 LS L

i t i tP P   (12) 

, ,0 LS L

i t i tQ Q 

 

(13) 

F. ESS and DG Constraints 

   The constraints related to energy storage systems 

(ESSs) are as follows [42]: 

 1 /ch dch

t t t ch t dchSOC SOC P P t      (14) 

min maxtSOC SOC SOC 

 

(15) 

min max

ch ch ch

tP P P 
 

(16) 

min max

dch dch dch

tP P P 
 

(17) 

where SOCt is the charge state of the ESS at time t. 

   The constraints related to the wind power plants 

are as follows: 

, ,

WC w W

i t t i i tP w P    (18) 

,0 W w

i t t iP w  

 
(19) 

Similarly, the solar power plant constraints can be 

defined as:  

, ,

SC S S

i t t i i tP s P    (20) 

,0 S S

i t t iP s  

 
(21) 

where Pi,t
s and Pi,t

sc are the solar generation and solar 

curtailment in bus i at time t , respectively. St is the 
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solar availability at time t, and Δi
s the solar power 

plant capacity in bus i. 

2.4. Demand response program 

    A time-value-based demand-shifting strategy was 

used to reduce the peak load and shift this value to 

other mid-peak and low-demand hours [43]. 

According to this strategy, the electrical power 

consumption at bus i and time t in the presence of 

the demand response scheme (Pi,t
L) is calculated as 

the sum of the base load (Pi,t
L0) and the decision 

variable of the demand response (DRi,t). if DRi,t>0, 

the active power demand of the ith bus will increase 

at hour t and valley filling will occur. Similarly, If 

DRi,t<0, the active power demand of the ith bus will 

decreases at hour t; hence peak shaving occurs. 

Another possible state is when DRi,t is zero; in this 

case, no demand response program occurs. The 

algebraic sum of the load reduction and increase in 

each bus should be zero. The maximum and 

minimum load response values were also determined 

using Equation (24). In this method, only the active 

power changes are considered. In this study, the 

effect of demand response on reactive power is also 

considered, so that the power factor before the load 

response and the active power after the load 

response is used to calculate the new reactive power. 

It is assumed that before and after the demand 

response, the power factor of the loads has a 

constant value. The formulae for the above 

expressions are as follows.  

0

, , , ;L L

i t i t i tP P DR i  
 

(22) 

24

,

1

1;i t

t

DR i

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(23) 

0 0

, , , ;L L

i t i t i tP DR P i      
 

(24) 
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0

,

, 0

,

tan

L

i t

i t L

i t

Q

P
   (25) 

 , , ,tanL L

i t i t i tQ P  (26) 

 

3. Case studies and data 

     The proposed DR program was tested on a 

modified IEEE 24-bus system [35], as shown in 

Figure 4, where 100 and 50 MW PV solar power 

plants were added to buses 3 and 23, respectively. In 

addition to thermal power plants, this structure 

consists of three wind power plants (With a capacity 

of 200, 150, and 100 in 8, 19, and 21 basses) and 

two battery energy storage systems (BESS).  These 

two BESSs, with capacities of 200 and 100, are 

located in buses 19 and 21, respectively. The 

charging and discharging efficiencies of the BESS 

are 95% and 90%, respectively, and the minimum 

and maximum charge/discharge rates are considered 

to be zero and 20% of the maximum storage 

capacity, respectively. In addition, the minimum 

state of charge (SOC0) was 20% of its maximum 

capacity. 

     Because of the nonlinear problem, GAMS 

software by nonlinear programming (NLP) was used 

to solve the problem. In this structure, the 

characteristics of the power transmission lines, such 

as resistance, reactance, susceptance, and capacity, 

are shown in Table 1. The fuel cost factor (bg), ramp 

up/down rate (RUg, RDg), and minimum and 

maximum limits of active and reactive power (Pi
g,min, 

Pi
g,max, Qi

g,min, Qi
g,max) for each thermal generation 

unit are listed in table 2. The base power used was 

100 MVA. Bus 13 of the test system is considered a 

slack bus (1<0°) and the minimum and maximum 

per-unit values of the voltage range in the buses are 

0.9 and 1.1. The real and reactive power loads of bus 

i are listed in Table 3. By using the amount of active 

and reactive power, it is possible to calculate the 

power factor of the loads. The power output 

variation of solar and wind plants (hypothetical) and 

demand changes (anticipated in Section 2.1) during 

the day are shown in Figure 5. 

     In [44], mobile battery storage was used to 

evaluate the cost of curtailed wind energy, and the 

evaluation result of VOLW reached a range of 150 - 

249 $/MWh. In the present study, the VOLW value 

was 200. In [45], the changes in the VOLS value 

have been between 33.8 and 112.8 $/MWh, where 

the value of 100 is considered. 

 

 
        Figure 4. A modified IEEE 24-bus system  
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Table 1. characteristics of power transmission lines 

[35] 

line r x b Limit 

1 .2 0.0026 0.0139 0.4611 175 

1 .3 0.0546 0.2112 0.0572 175 

1 .5 0.0218 0.0845 0.0229 175 

2 .4 0.0328 0.1267 0.0343 175 

2 .6 0.0497 0.192 0.052 175 

3 .9 0.0308 0.119 0.0322 175 

3 .24 0.0023 0.0839 0 400 

4 .9 0.0268 0.1037 0.0281 175 

5 .10 0.0228 0.0883 0.0239 175 

6 .10 0.0139 0.0605 2.459 175 

7 .8 0.0159 0.0614 0.0166 175 

8 .9 0.0427 0.1651 0.0447 175 

8 .10 0.0427 0.1651 0.0447 175 

9 .11 0.0023 0.0839 0 400 

9 .12 0.0023 0.0839 0 400 

10.11 0.0023 0.0839 0 400 

10.12 0.0023 0.0839 0 400 

11.13 0.0061 0.0476 0.0999 500 

11.14 0.0054 0.0418 0.0879 500 

12.13 0.0061 0.0476 0.0999 500 

12.23 0.0124 0.0966 0.203 500 

 

Table 2. characteristics of thermal generation unit 

[35] 

bus 

 

Pmax 

(MW) 

Pmin 

(MW) 

b 

($/MW) 

Qmax 

(MVAR) 

Qmin 

(MVAR) 

1 152 30.4 13.32 192 -50 

2 152 30.4 13.32 192 -50 

7 350 75 20.7 300 0 

13 591 206.85 20.93 591 0 

15 215 66.25 21 215 -100 

16 155 54.25 10.52 155 -50 

18 400 100 5.47 400 -50 

21 400 100 5.47 400 -50 

22 300 0 0 300 -60 

23 360 248.5 10.52 310 -125 

 

Table 3. The value of active and reactive loads of 

each bus [35] 

bus P (MW) Q (MVAR) 

1 108 22 

2 97 20 

3 180 37 

4 74 15 

5 71 14 

6 136 28 

7 125 25 

8 171 35 

9 175 36 

10 195 40 

13 265 54 

14 194 39 

15 317 64 

16 100 20 

18 333 68 

19 181 37 

20 128 26 

 

 
Figure 5. Daily power generation of solar and wind 

plants and load demand curves 

To extract the best optimal solution from a multi-

objective OPF problem, a technique for order 

preference by similarity to ideal solution (TOPSIS) 

is implemented to select the best solution. The steps 

of this method include the calculation of the 

normalized matrix, the weighted normalized matrix, 

the best and worst ideal value for each of the 

objective functions, the Euclidean distance between 

each of the weighted normalized and ideal solutions, 

and finally scoring each state. The details of this 

method are mentioned in [46].  

4. Results & discussion  

     These results were implemented with an Intel 

Corei7, 2.2 GHz CPU, 6 GB of RAM, and a 500 GB 

hard disc computer. This problem was modeled in 

the Generic Algebraic Modeling System (GAMS) 

environment and solved using CONOPT as an NLP 

solver. This section is divided into two parts: 

validation and optimization results. 



Zarei and Ghaffarzadeh/Journal of Solar Energy Research Volume 8 Number 2 Spring (2023) 1367-1379 

1374 

 

4.1 Validation  

    Table 4 presents the effect of the demand 

response using the proposed method compared with 

those reported by Soroudi [35] (without DR) and 

Jabari et al. [23] (only active power participated in 

the DR). A maximum DR rate of 20% was 

considered. The total cost was reduced by 

considering the DR program. If DR occurs in the 

reactive power in addition to the active power, a 

reduction in the peak and an increase in the valley 

will occur for the reactive power. Figure 6 and 7 

illustrate this explanation. In this study, the cost of 

the reactive power is considered fixed (as described 

in Section 2.2); however, shifting the required 

reactive power during the peak load curve to its low 

load also reduces the cost of reactive power 

generation. 

Table 4. Comparison of total cost and peak 

reduction 
                Cases 

    OFs          

Ref 

[35] 

Ref 

[23] 

Proposed 

method 

TC (×103$) 442.3 415.6 415.6 

Active load 

(MW) 

Peak 2850 2455 2455 

Valley 1750 2100 2100 

Rective load 

(MVAR) 

Peak 580 580 500 

Valley 356 356 427 

(TC=Total cost, VDF=Voltage Deviation Function, 

PR=peak reduction) 

 

 

 
Figure 6. Total active load profile 

 

 
Figure 7. Total reactive load profile 

4.2 Optimization results       

     Table 5 presents the results of the optimization. 

According to this table, demand response reduces 

the cost of the entire system, reduces the peak load, 

increases the load valley, and improves the load 

factor of the power grid. For example, with a 20% 

demand response, a 13.85% reduction in the peak 

load and a 20% increase in the valley load were 

achieved. Shifting the load consumption during peak 

hours to valley hours reduces the cost for the 

consumer, eliminates the need for expensive power 

plants during peak load, and can cancel or postpone 

the construction of new power plants.  

     To highlight the advantages of demand response, 

Figure 8 shows the total electrical load profile before 

and after the demand response. The percentages of 

load participation in the demand response were 

considered to be 5, 10, 15, 20, and 25%, 

respectively. It can be seen that with increasing 

demand response, the peak value decreases 

significantly, the valley value increases, and the load 

curve becomes more levelized. Increasing the 

demand response rate of the load may cause time 

displacement of the peak load, and thus, its amount 

should be controlled.  

     Figure 9 shows the hourly dispatch of the ESS 

before and after the demand response. By increasing 

the participation of loads in the demand response, 

the number of times and amount of charging and 

discharging cycles of the ESS decreases. Because 

the number of charging and discharging cycles is 

inversely related to the life of the ESS, the demand 

response increases the life of the energy storage 

equipment. 
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Table 5. Results of multi-objective OPF 
  Proposed DR  

DR 

Percent 

NA 5 10 15 20 25 

TC 

(×103$) 

442.3 426.4 420.9 417.5 415.6 414.8  

TVD 

(p.u.) 

25.28 24.87 25.76 25.81 26.14 26.31 

PR (%) 0.00 5.00 0.06 11.58 13.85 13.87 

Peak 

(MW) 

2850 2708 2592 2520 2455 2454 

Valley 

(MW) 

1750 1838 1925 2012 2100 2100 

Load 

Factor 

0.815 0.858 0.904 0.928 0.945 0.949 

Peak 

(MVAR) 

580 551 523 509 500 449 

Valley 

(MVAR) 

356 374 391 410 427 445 

Peak to 

Valley 

(MVAR) 

224 177 131 100 73 54 

(TC=Total cost, VDF=Voltage Deviation Function, 

PR=peak reduction, NA=not applied) 

 

The voltage level of the load and generation at 

each bus is very important for supply quality. Figure 

10 shows the voltage profile variation at bus 6 in the 

three states without DR, 10% DR, and 20% DR. As 

shown, with the increase in DR, the variation in the 

bus voltage is more limited. The voltage profile of 

the IEEE 24-bus test system is shown in Figure 11, 

from which it can be seen that the voltages at buses 

1, 2, 4, and 7 are near the considered specified limit 

of -10% because these buses are far away from the 

main grid supply points (thermal, solar, and wind 

power plants) or have a high generation cost. In 

contrast, buses 20, 22, and 23 have a maximum 

voltage limit (+10%) because they have renewable 

energy sources, or the power plant connected to 

them has a low production cost.  

     The TOPSIS method was used to compare 

different states of the demand response. Because of 

the importance of economic issues and peak 

shaving, the weighting coefficients of the cost, total 

deviation voltage (TDV), and peak reduction (PR) 

functions are 0.35, 0.3, and 0.35, respectively. As 

presented in Table 6, the multi-objective 

optimization analysis with TOPSIS shows that the 

most optimal state occurs when the demand response 

is 20%, which indicates that an excessive increase in 

the demand response requirement shifts the peak 

load to another time. 

 
Figure 8. Electrical load profile before and after DR 

 
Figure 9. SOC of BESS at bus 19 

 
Figure 10. Voltage profile at bus 6 
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Figure 11. Voltage profile of the IEEE 24-bus system 

 

Table 6. Results of the TOPSIS method 
OFs TC TDV PR 

Pi Rank  Weight 

DR% 
0.35 0.3 0.35 

25 0.140 0.125 0.208 0.968 2 

20 0.140 0.125 0.208 0.972 1 

15 0.141 0.123 0.174 0.834 3 

10 0.142 0.123 0.001 0.036 5 

5 0.144 0.119 0.075 0.362 4 

0 0.149 0.120 0.000 0.023 6 

5. Conclusions  

     In this study, the DSM-based AC optimal power 

flow was investigated by a multi-objective problem 

constructed with some cost functions using the 

weighted sum method. In the proposed method, both 

active and reactive powers were applied to the 

demand response problem.  In addition to reducing 

the peak load, the total cost and total voltage 

deviation were considered; thus, the problem of 

moving the peak load was minimized. In addition to 

using the deep learning method to predict the load 

based on the previous data, the accuracy of the 

response increased. The TOPSIS method is used to 

determine the optimal point in multi-objective 

optimization. The optimization results show that the 

proposed demand response (20%) not only achieved 

peak reduction and valley filling but also minimized 

the Total Voltage Deviation and system cost. 

Reducing the demand-supply gap, decreasing the 

charge and discharge of energy storage systems, and 

increasing the quality of service are other benefits of 

the proposed demand response programs.   

     Considering the space of the smart network, it 

was assumed that all the loads were involved in the 

Demand response problem, and in future research, 

some of the loads can be considered as elastic 

(participating in DR) and another part as inelastic. 

Nomenclature  

Subscripts  

ADMM Alternating direction method of 

multipliers 

AI Artificial Intelligence 

BESS Battery Energy Storage System  

DERs Distributed Energy Resources  

DMPC Distributed Model Predictive Control 

DR Demand Response 

DSM Demand side management 

EEC Energy efficiency and conservation  

ESS Energy Storage System 

IBDR Incentive-based demand response  

LSE Load serving entities 

LSTM Long short-term memory  

NLP Non-Linear Programming 

OPF Optimal power flow 

PBDR Price-based demand response  

PR Peak reduction 

PV Photovoltaic 

SG Smart Grid  

SOC State of charge 

TDV Total deviation voltage 

VDF Voltage Deviation Function 

Indices and Sets 

ch/dch Index denotes the charge/discharge 

state of ESS. 

g Index denotes the thermal generation 

units. 

i,j Index denotes the network buses. 

t Time indicator 

w Index denotes the wind turbine units. 

Ωi
ι Set of all buses connected to bus i 

Parameters and Variables 

bg fuel cost coefficient of active power 
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generation at unit g ($/MW) 

b Susceptance of transmission line 

cg fuel cost coefficient of reactive power 

generation at unit g ($/MW) 

Pch
max/Pdch

max maximum charging and discharging 

limits (MW) 

Pch
min/Pdch

min minimum charging and discharging 

limits (MW) 

Pi,t
ch/ Pi,t

dch Charging/discharging power of ESS 

(MW) 

Pi,t
L / Pi,t

L0 Active power consumption at bus i 

and time t after/before demand 

response (MW) 

Pi,t
LS Active Load shedding in bus i at time 

t (MW) 

Pi,t
WC/ Pi,t

SC Wind/solar curtailment in bus i at 

time t (MW) 

Pi,t
S Solar power plant generation in 

bus i at time t (MW) 

Pij,t / Qij,t Active/reactive power flow from bus i 

to bus j (MW / MVAR) 

Pi
g,min/Pi

g,max minimum and maximum limits of 

active power (MW) 

Pload
new Active Load after demand response 

(MW) 

Pload
old Active Load before demand response 

(MW) 

Qi
g,min/Qi

g,max minimum and maximum limits of 

reactive power (MVAR) 

Qi,t
L / Qi,t

L0 Reactive power consumption at bus i 

and time t after/before demand 

response (MVAR) 

Qi,t
LS Reactive Load shedding in bus i at 

time t (MVAR) 

Qi,t
W

 wind turbine reactive power 

generation  (MVAR) 

RUg/RDg ramp up/down rate (MW/h)  

Sij,t Complex power flow from bus i to j 

(MVA) 

St solar availability in time t (p.u) 

SOCt State of charge of ESS at time t 

(MWh) 

Vi Bus voltage magnitude at the bus i 

(p.u) 

VOLL 

VOLW 

VOLS 

value of loss of load ($/MWh) 

value of loss of wind ($/MWh)  

value of loss of solar ($/MWh) 

wt wind availability in time t (p.u) 

Zij<θij impedance of transmission line i to j 

(p.u<deg) 

Λt
S / Λt

w Solar/Wind availability at time t (p.u) 

λi Locational marginal price in bus i 

($/MWh). 

δi
 Bus voltage angle at the bus i (deg) 

ηch / ηdch Charge/discharge efficiency of ESS 
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