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Abstract  

Photovoltaic (PV) systems have been gaining great attention during the last decade. One of the main faults in PV 

arrays is partial shading, affecting its electrical parameters. Failure to detect this fault may result in optimal 

generated power reduction and hot spotting leading to damage to cell encapsulant and second breakdown. This 

paper develops a partial shading detection algorithm that only requires the available measurements of array voltage 

and current. By quantifying the wave-shape of the super-imposed component of PV array power by the skewness 

function, it can discriminate a partial shading condition from the short-circuit and high-resistance faults. The 

developed scheme is implemented in a central intelligent electronic device and does not require a communication 

link and training data set. The merits of the proposed partial shading detection algorithm are demonstrated through 

several fault scenarios using a 5×5 grid-connected PV generation system. 
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Introduction 
     According to the international energy agency 

(IEA) report, the installed capacity of renewable 

power increases by 1200 GW from 2019 to 2024 

which is equal to 50% of renewable power installed 

capacity of the world and 100% of the present 

installed power capacity of the United States [1]. 

Sixty percent of this expected renewable power 

growth is dedicated to photovoltaic (PV) systems 

while onshore and offshore wind powers contribute 

only 25% and 4% of the increase, respectively. This 

significant attention is due to advances in PV 

modules, government incentives, and accessibility 

[2, 3]. PV systems can operate in both grid-

connected and islanded (standalone) operating 

conditions, increasing the power quality and 

reliability of electrical distribution networks. 

However, some technical challenge s should be 

addressed to facilitate the integration of photovoltaic 

systems into distribution networks. 

The outdoor installation makes PV systems 

vulnerable to various threats [4]. One of the main 

problems is the occurrence of the partial shading 

condition (PSC) where a PV array is partially shaded 

by passing clouds and nearby buildings [5, 6]. If this 

fault remains undetected, the temperature of the 

shaded section significantly increases, degrading the 

PV performance. This phenomenon that is known as 

hot spotting results in damage to cell encapsulant 

and second breakdown [7]. On the other hand, PSC 

causes the presence of multi peaks in P-V 

characteristic curve of PV array, resulting in a 

deviation from the optimal power generation. 

Up to now, various partial shading condition 

detection methods have been proposed that can be 

broadly classified into two groups: (i) electrical 
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parameter processing based techniques and (ii) 

machine learning-based techniques. In the first 

group, mainly a PSC detection index is defined and 

by comparing it with a threshold. The conventional 

partial shading condition detection criterion is an 

abrupt change of PV output power. However, the 

low value of power change in large PV systems and 

malfunction in the case of a short-circuit fault are the 

disadvantages of this method. The partial shading 

condition detection criteria proposed in [8] consist of 

the derivative of array power with respect to array 

voltage and change of array and module voltages. 

By comparing the measured and simulated losses of 

the PV system, [9] presents a partial shading 

condition detection scheme. A modified beta method 

is proposed in [10] to detect PSC. By monitoring the 

slope of I-V characteristic curve, [11, 12] detect the 

partial shading condition. The partial shading 

condition detection technique proposed in [13] 

compares the output power of PV modules using 

communication between their converters. The basis 

of the second group is to apply machine learning 

techniques. The artificial neural network (ANN) is 

used in [14] to detect partial shading conditions. 

Using the I-V curve and environmental parameters, a 

kernel-based extreme learning machine is trained in 

[15] to detect PSC. Based on parameters calculated 

from the I-V characteristic curve, [16] presents a 

PSC detection method using a fuzzy classifier. In 

[17], a voltage based shading pattern and a multiple-

output support vector regression are used to estimate 

the shading rate and shading strength, respectively. 

A PSC detection technique based on the decision 

tree model is developed in [18]. The need for 

training data set is the main disadvantage of the 

second PSC detection group. 

This paper presents an online electrical parameter 

processing based technique for PSC detection. By 

measuring the available measurements of PV 

voltage and current, the output power of the PV 

array is calculated and adopted as the electrical 

parameter o be processed. First, the super-imposed 

component of PV power is calculated by a central 

intelligent electronic device (IED) to detect a fault 

condition. Then, it is used as the input of skewness 

function to quantify its wave-shape, classifying the 

fault condition. The developed method does not 

require training data set and communication links 

and does not mal-operate in the case of short-circuit 

fault. 

The rest of the paper is organized as follows. The 

partial shading condition is described in the Partial 

Shading Condition Section. Developed Methodology 

Section is dedicated to the proposed PSC detection 

strategy. The performance of the developed scheme 

is assessed in the Performance Evaluation Section. 

Finally, Conclusion Section concludes the paper. 

 

Partial Shading Condition 

A PV array consists of several strings where each 

string comprises a group of PV modules. Each PV 

module is composed of several PV cells. Due to the 

small area of a PV array, it receives uniform solar 

irradiation during the normal operating condition. In 

this condition, the single-diode equivalent circuit is 

generally used to model each PV module as [19] 
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where I and V are the output current and voltage, Iph 

and I0 are the light-generated and diode reverse 

saturation currents, q and T are the electronic charge 

and cell's temperature, n and kB are the diode's 

ideality factor and Boltzmann constant, and Rsh and 

RS are the shunt and series resistances, respectively. 

Each PV module is characterized by two curves of 

current-voltage (I-V) and power-voltage (P-V). 

Based on (1), the generated current (power) of a PV 

module depends on solar irradiation. Fig. 1 shows 

the characteristic curves of a PV string with five 

series 305.2 W SunPower modules under various 

irradiations. The open-circuit voltage VOC, short-

circuit current ISC, voltage at maximum power point 

(MPP) VMPP, and current at maximum power point 

IMPP of each module are 64.2 V, 5.96 A, 54.7 V, and 

5.58 A, respectively. As shown in Fig. 1, the 

maximum generated power of the study PV string 

(MPP) changes by variation of solar irradiance. 

However, due to outdoor installation, PV arrays 

are always vulnerable to partial shading conditions, 

resulting in non-uniform irradiation conditions. A 

partial shading condition is characterized by two 

factors [17]: shading rate   and shading strength 

 . The shading rate determines the percentage of 

shaded modules in a string as 
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Figure 1. PV characteristic curves under uniform 

solar irradiation. 

 

where shadedN  is the number of shaded modules in 

a string and SN is the number of all modules of a 

string. The shading strength determines the 

percentage of solar irradiance reduction on the 

shaded modules with respect to the standard test 

condition (STC, 1000 W/m2 irradiation and 25ᵒC 

temperature) as 

 

shading

STC

100,
G

G
    (3) 

 

where shadingG is the solar irradiance at shaded 

modules and STCG  is the solar irradiance under 

STC. 

Fig. 2 shows the characteristic curves of study PV 

string under various shading rates while in Fig. 3, 

the characteristic curves are shown in the case of 

two shaded modules with various shading strengths. 

When a partial shading occurs, there is more than 

one MPP in the characteristic curves (in this case 2 

MPPs) where one MPP is the global MPP with the 

highest power while others are local MPPs with 

lower power. The conventional maximum power 

point tracking (MPPT) algorithms may not be able 

to find the global MPP, resulting in a reduction of 

injected power of PV arrays to the distribution 

network. Fig. 4 shows the characteristic curves of 

the study PV string when four modules are shaded 

by   of 5%, 15%, 25%, and 35%. In this case, there 

are 5 MPPs, making the global MPP determination 

difficult. 

 

 
Figure 2. PV characteristic curves under various 

shading rates. 

 

 
Figure 3. PV characteristic curves under various 

shading strengths. 

 

 
Figure 4. PV characteristic curves in the case of non-

uniform shading condition. 

 

On the other hand, when a module is shaded, its 

I-V curve shifts down, as shown in Fig. 1. In this 

condition, the module voltage becomes negative and 

the modules consume power instead of power 

generation, as shown in Fig. 5. The power 

dissipation results in temperature increment. If the 

partial shading condition is present for a long time, 

the hot spotting phenomenon occurs, resulting in 

damage to the shaded PV modules. Although the 

installation of bypass diodes in parallel with PV 

modules can mitigate hot spotting, additional cost 
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and power loss of bypass diodes limit their 

application. 

 

 
Figure 5. I-V characteristic curves of series normal 

and shaded modules. 

 

Developed Methodology 

According to the previous section, a partial 

shading condition may result in generated power 

reduction and damage to PV modules. To address 

these problems, the protection system of PV arrays 

should be equipped with a partial shading condition 

detection unit. This paper presents a partial shading 

detection algorithm using the statistical measure of 

skewness. By monitoring a moving data window 

consisting of the superimposed component of PV 

power, its wave-shape is quantified as the partial 

shading detection index. The remainder of this 

section is dedicated to the mathematical description 

of the proposed two-stage strategy. 

 

Stage 1 - Fault Detection: The proposed scheme 

only requires available measurements of PV array 

voltage and current; thus, it does not impose the 

additional cost. The first step is to mitigate the noise 

by passing the recorded voltage and current signals 

through the low-pass filters (LPFs). The processing 

of the filtered signals is done by a central IED. It 

samples the PV voltage and current signals with a 

sampling frequency of fs. The sampled signals are 

normalized as 
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where PVv  and PVi  are the array voltage and 

current and 
pu
PVv  and 

pu
PVi  are their normalized 

value, respectively. k is the sampling step. By using 

(4) and (5), the normalized PV array power 
pu
PVp  is 

calculated as 

 

pu pu pu
PV PV PV[ ] [ ] [ ].p k v k i k   (6) 

 

To simplify the detection of an abnormal 

condition, the super-imposed component of array 

power is calculated. Based on superposition 

theorem, the PV power during a fault condition 

comprises of normal running and super-imposed 

components as [20] 

 
pu pu pu
PV,F PV,N PV,SI

[ ] [ ] [ ],p k p k p k   (7) 

 

where 
pu
PV,Fp , 

pu
PV,Np , and 

pu
PV,SI

p  are the fault, 

normal running, and super-imposed components of 

PV array power, respectively. Using the Delta filter 

[20], the super-imposed power can be calculated as 

 
pu pu pu

PV PVPV,SI
[ ] [ ] [ ],dp k p k p k k    (8) 

 

where kd is the number of time delay samples. The 

promising feature of the super-imposed component 

is that it is about zero during normal operation while 

it changes when a disturbance occurs. Consequently, 

a fault condition is verified if 
pu

1PV,SI
p  , where 

1  is the fault detection threshold. 

 

Stage 2 - Fault Classification: The super-imposed 

power is not a reliable detection index because it 

changes for every fault such as partial shading and 

short-circuit conditions. To address this problem, 

this paper proposes to use the skewness. As a 

statistical measure, it quantifies the spread of data 

around the mean. If the skewness is positive 

(negative), the signal is more shifted to the right 

(left) while if the data has the normal distribution, 

the skewness is zero. 

In the proposed scheme, the super-imposed 

power is monitored in a moving data window with a 

length of N. The jth window is formed as 

 

pu pu
PV,SI PV,SI

[ 1] ... [ ] .j p j p j N
 

  
  

P  (9) 

 

To quantify the asymmetry of the jP around the 

mean  , the skewness S of set jP is calculated as 

[21] 
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where E is the expected value of P  and   is 

the standard deviation. During normal operation, the 

super-imposed power is not exactly zero due to 

small disturbance of non-ideal filtering. Thus, the 

skewness of super-imposed power data is non-zero 

during normal operation. When a disturbance occurs 

in the PV array, it changes to another non-zero 

value. It makes threshold determination difficult. To 

address this problem, the super-imposed component 

of skewness SIS is calculated as 

 

   SI, 1 .j j jS S S  P P  (11) 

 

During normal operation, data of two subsequent 

moving window data are very similar, resulting in 

similar skewness values and nearly zero SIS . 

However, when a disturbance occurs, SIS changes 

and has a non-zero value. 

When a short-circuit fault occurs, the super-

imposed power changes instantaneously while it 

varies slower during partial shading conditions. The 

reason is that the dynamic model of the PV cell 

comprises a shunt resistance in parallel with a small 

leakage capacitor. Thus, the PV cell natural transient 

response has a sigmoid-like "S" shape in the case of 

partial shading while it has an exponential shape in 

the case of a short circuit, similar to a first-order 

circuit [22]. It results in the super-imposed power 

wave-shape during a partial shading condition is 

similar to the normal distribution, resulting in the 

skewness of nearly zero while during a short-circuit 

condition, the wave-shape of super-imposed power 

spreads out more to the right, resulting in positive 

skewness. Consequently, using the fault 

classification threshold of 2 , a partial shading 

condition can be discriminated from a short-circuit 

fault. The developed fault classification scheme is 

expressed as 
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(12) 

Fig. 6 shows the flowchart of the developed 

partial shading detection strategy. First, the array 

voltage and current signals are filtered by LPFs and 

then, the central IED samples and normalized them. 

The absolute value of the super-imposed component 

of array power is calculated and monitored to detect 

the abnormal condition. Then, the skewness is 

calculated for the moving windows of jP . Based on 

(12), the PV operating condition is classified. 

 

Performance Evaluation 

To assess the performance of the proposed partial 

shading detection algorithm, a 5×5, 7.6 kW PV array 

is simulated in MATLAB/Simulink environment. 

The 305.2 W SunPower modules are made of mono-

crystalline cells. Fig. 7 shows the layout of the study 

grid-connected PV array. It consists of DC-DC and 

DC-AC converters. The control system of the 500 V 

DC-DC converter aims to track the MPP by the 

peuterb and observation (P&O) MPPT algorithm 

[23]. The DC-AC converter is the interface between 

the DC side of the study array and distribution 

network. It is a centralized three-phase three-level 

voltage-sourced converter (VSC) with two control 

loops to regulate the DC link voltage and real and 

reactive components of the distribution network 

current. The developed algorithm is implemented in 

central IED with the following parameters: the 

sampling frequency sf of 1 kHz, moving window 

length N of 200, time delay sample number dk  of 

50, fault detection threshold 1  of 0.004 pu, and 

fault classification threshold 2 of 1.4. 
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Case 1 - Partial Shading: This section is dedicated 

to evaluating the performance of the developed 

algorithm in the case of partial shading conditions. 

First, a severe partial shading condition is simulated. 

To this end, 3 out of 5 strings are adopted and in 

each string, 4 out of 5 modules are shaded, i.e, about 

50% of the study PV array is under partial shading 

condition. The simulated shading starts at 0.7t   s 

and during 0.3 s, the solar irradiance for shaded 

modules is reduced from 1000 W/m2 to 100 W/m2. 

Thus, the shading rate is 80%  and the final 

shading strength is 10%  .  The simulation results 

are shown in Fig. 8. 
pu
PV,SI

p increase to 0.09 pu and 

exceeds fault detection threshold 1 . However, due 

to the low speed of super-imposed power change, 

the super-imposed power wave-shape is similar to 

the normal distribution, resulting in the low super-

imposed skewness of 1.07 that is lower than the fault 

classification threshold 2 . Consequently, this 

condition is properly classified as a partial shading. 

 
Figure 6. Flowchart of the developed partial shading condition detection algorithm. 

 

 
Figure 7. Layout of the study grid-connected PV array. 
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In the next scenario, a non-severe partial shading 

condition is considered where 3 modules of only one 

string are shaded (12% of the study PV array). In 

this scenario, the solar irradiance for shaded 

modules is reduced from 1000 W/m2 to 200 W/m2 

during 1 s. Thus, the shading rate and shading 

strength are 60% and 20%, respectively. Fig. 9 

shows the study results. The super-imposed power 

increases to 0.009 pu and exceeds the fault detection 

threshold of 0.004 pu. However, SIS is below the 

fault classification threshold of 1.4. According to 

(12), the developed algorithm interprets this 

abnormal condition as a partial shading. 

 

 
Figure 8. Performance of the developed algorithm in the case of a severe partial shading condition. 

 

 
Figure 9. Performance of the developed algorithm in the case of a non-severe partial shading condition. 
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Case 2 - Short-Circuit: A reliable partial shading 

detection algorithm does not mal-operate in the case 

of a short-circuit fault. This section investigates the 

performance of the proposed scheme during both 

low-impedance and high-impedance faults. First, a 

line-tt-line (LL) fault condition with fault path 

resistance of 0.1 Ω and a location mismatch of 60% 

as a severe fault condition is simulated at 0.7t  s. 

Fig. 10 shows the array voltage and current as well 

as the absolute value of super-imposed power and 

super-imposed skewness. The maximum value of 

pu
PV,SI

p  is 0.87 pu which is higher than 1 ; thus, 

the disturbance is detected. Also, the super-imposed 

skewness increases to 7.35 which is significantly 

higher than 2 . Thus, the developed scheme 

properly classifies this disturbance as a short-circuit 

fault. 

To evaluate the performance of the proposed 

method during a high-resistance fault, a 15 Ω line-

to-ground fault with a location mismatch of 20% as 

a non-severe fault condition is simulated in the study 

PV array. The simulation results are shown in Fig. 

11. The absolute value of super-imposed power 

increases to 0.058 pu and the disturbance is detected. 

SIS  is 1.94 for this case, verifying proper 

classification of the proposed scheme as a short-

circuit fault. 

 

 
Figure 10. Performance of the developed algorithm in the case of a severe short-circuit condition. 

 

 
Figure 11. Performance of the developed algorithm in the case of a non-severe fault condition. 
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Case 3 - Parameter Uncertainty: Since the PV 

arrays work for a long time, they are vulnerable to 

aging, resulting in gradual performance loss [24, 

25]. Ref. [26] indicates that for a crystalline silicon 

system after 20 years of operation, the open-circuit 

voltage, short-circuit current, and maximum power 

reduce by about 3%, 4%, and 11%, respectively. 

This section is dedicated to evaluating the PV model 

parameter independency of the proposed partial 

shading detection scheme. To this end, VOC, ISC, and 

the maximum power of the PV cells are reduced to 

62.2 V, 5.72 A, and 271.5 W, respectively, and the 

partial shading condition of the first scenario of Case 

1 is simulated. According to the simulation results of 

Fig. 12, this condition is properly detected as a 

partial shading condition. 

 

Conclusion 

The development of an effective protection 

system paves the way for increased integration of 

PV generation systems. One of the main protection 

challenges of PV arrays is the occurrence of partial 

shading conditions, resulting in optimal power 

generation reduction and hot spotting. This paper 

has proposed a wave-shape based partial shading 

detection algorithm that relies on a central IED, 

sampling the available measurement of array voltage 

and current. By quantifying the skewness of super-

imposed array power wave-shape, the developed 

algorithm can detect the partial shading condition 

and does not mal-operate in the case of short-circuit 

and high-impedance faults. It does not require a 

communication link and a training data set. The 

simulation results of the implementation of the 

developed algorithm in a 5×5 grid-connected PV 

generation system confirm its effectiveness. 
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