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Abstract  

Artificially roughened surface is a common method to enhance the heat transfer in a flow passage. Energy, exergy 

and economic analysis of solar air heaters with different roughness geometries have been done. To improve the 

performance of the solar collector, 4 different types of roughness on the absorber plate have been used. The 

mathematical model has been validated with analytical and experimental results available in the literature with 

acceptable deviation. On the basis of numerical calculations, it has been concluded that roughened surface 

improves energy and exergy efficiency of solar air heater by 14 % and 1%, respectively. Further it was found that 

the most efficient roughness is Discrete V Rib and the least expensive roughness is U-Shape turbulator. NSGA II 

and TOPSIS algorithms used to select the best roughness geometry. 
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1. Introduction 

 

The flat-plate solar air heaters (SAH) are extensively 

employed in low temperature energy applications such as 

space heating, drying of agricultural products and various 

industrial applications. Heat transfer from the absorber of 

solar air heater to air is low due to a presence of 

viscous/laminar sublayer in turbulent boundary layer. Heat 

transfer rate in a viscous sublayer is adversely affected due 

to lower thermal conductivity and relatively low velocity 

of air [1]. One of the methods to overcome this problem is 

provision of the artificial rib roughness on the underside of 

the absorber of solar air heater to restrict development of 

the viscous sublayer and thermal boundary layer. The 

artificial rib roughness on a heat transfer surface in the 

form of projections mainly creates turbulence near the 

wall, breaks the viscous sublayer and thus enhances the 

heat transfer coefficient with a minimum pressure loss 

penalty. The ribroughness geometries such as transverse 

[2,3], inclined [4], V-up [5] and V-down [4] are some 

common reported geometries to enhance the thermal 

performance of solar air heaters. These studies have shown 

that V-down ribs perform better than V-up ribs. Further, 

V-up ribs perform better than angled and transverse ribs. It 

has been reported that discretization of rib roughness 

results in even higher thermal performance due to flow 

through the gap [4,6,7]. However, it is reported that the 

artificial rib roughness results in simultaneous 

enhancement in frictional losses leading to more power 

requirement for fluid to flow through the duct. Hans et al. 

[8] have given detailed review of large number of 

ribroughness geometries investigated for solar air heaters. 

The studies have shown that dimensionless rib-roughness 

parameters such as relative roughness pitch, relative 

roughness height, angle of attack, etc. have an important  
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Correlations of heat transfer and friction factors for SAH with different roughness elements on top side of absorber plateTable.1  
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influence on heat transfer and friction characteristics of 

the rib roughened duct. Nature of discretization of ribs also 

influences the performance of the rib roughened duct.  

As the artificial rib roughness results in heat transfer 

enhancement with simultaneous increase in friction power 

penalty, it is useful to know in advance which combination 

of the artificial ribroughness parameters will lead to an 

improvement in overall performance of a solar air heater. 

In addition, it is important to know the improvement 

quantitatively.  

Various methods for predicting the performance of 

solar air heaters have been reported. Esen et al. [9,10] 

determined performance of a double flow solar air heaters 

using least-squares support vector machines, artificial 

neural network and wavelet neural network approaches, 

and compared the results with the experimental results 
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reported by Ozgen et al. [11]. Gupta [12], Saini [13] and 

Karwa et al. [14,15] determined performance of a 

roughened solar air heater using effective efficiency 

criterion. Second law of thermodynamics based exergy 

analysis incorporates quality of useful energy output and 

frictional losses. The exergy concept based on the second 

law of thermodynamics provides an analytical framework 

for system performance evaluation. The exergy is the 

maximum work potential that can be obtained from a form 

of energy [16]. The exergy analysis yields useful results 

because it deals with the irreversibility minimization or 

maximum exergy delivery. The exergy analysis has proved 

to be a powerful tool in the thermodynamic analysis of 

energy systems [17]. The second law based analysis of rib 

roughened solar air heaters has been reported by Layek et 

al. [18] and Gupta and Kaushik [19,20]. Layek et al. [18] 

studied numerically the entropy generation in the duct of a 

solar air heater having the transverse chamfered rib-groove 

roughness. Ribroughness 

parameters for the minimum entropy generation are 

found. Gupta and Kaushik [19] did the energy, effective 

and exergetic efficiency based performance evaluation of a 

solar air heater roughened with different rib-roughness 

geometries. It was reported that not a single geometry 

gives best exergetic performance for the whole range of 

Reynolds number. Gupta and Kaushik [20] reported the 

exergetic efficiency as suitable criterion for performance 

evaluation of the expended metal mesh roughened solar air 

heater. Suitable design parameters of the expended metal 

mesh were determined. The second law based analysis has 

also been reported for flat-plate solar air heater [21,22], 

corrugated absorber solar air heater [23], Raschig rings 

packed bed solar air heater [24], passively augmentated 

absorber solar air heater [25], double flow solar air heater  

[26], indirect solar cabinet dryer [27], thin layer drying of 

mulberry in a forced solar dryer [28], solar drying process 

of pistachio [29] and solar-assisted heat pump [30,31].  

In this investigation, multi-objective optimization of 

solar air heater roughened with different ribs have been 

carried out to maximize the thermal and exergetic 

efficiency and minimize annual cost of solar air heater. For 

this purpose we choose four different ribs that have a 

better performance in solar air heaters. Discrete V-down 

rib [32], winglet and wavy groove [33], Multi V rib [34] 

and U-shape turbulator [35] used as rib-roughness. 

Experimental investigations were carried by the authors to 

generate heat transfer and friction factor data pertinent to 

heating of air in a rectangular duct. (detailed 

experimentation, quantitative results and correlations are 

discussed in earlier published paper [33-36]). For this 

purpose we use NSGA II algorithm to find best data 

combination in optimization. This method give us 200 

combination of variables. To choose the best one we use 

TOPSIS algorithm. All of algorithm and optimization 

equation has been resolved in MATLAB 16. 

As shown in Table 1 , In this article we used 4 

geometry for rib-roughness that worked best. 

 

2. Materials and Methods 

2.1. Energy and Exergy Analysis 
The thermal performance of a solar air heater can be 

predicted on the basis of detailed consideration of heat 

transfer processes in the system. Using the correlations for 

heat transfer coefficient for flat plate solar air heater and 

the performance parameters (overall heat loss coefficient, 

heat removal factor etc.) can be evaluated. For this 

purpose, a step by step procedure has to be followed. In 

order to compute the top loss coefficient and heat removal 

factor plate temperatures are assumed and an iterative 

process is followed. Various steps involved in the iterative 

process have been explained below [37]. A computer 

program based on the proposed optimization in the next 

section of these calculations has been developed in 

MATLAB 16 software. 

Step 1: An initial estimate for the mean absorber plate 

temperature To, is made by using the approximation 

To=Ta+5. 

Step 2: Using this plate temperature, top loss coefficient, 

UT  and then overall loss coefficient, UL are computed 

using the following equations. The top loss coefficient UT 

can be computed using the relationship proposed by Klein 

[38] as given below: 
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Step 3: By using this estimated loss coefficient UL, the 

efficiency factor F0 and heat removal factor F0 are 

computed using the following equations. The heat removal 

factor, F0 is given by 

 

0 1 exp
p L p

L p p
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U A mC
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Where F is  

 

L

h
F

U h
 



 
(7) 

 

The heat transfer coefficient h can be determined from 

the correlation developed for rib-roughness. 

Net thermal energy gain is then computed using the 

following equation. 
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The temperature rise is computed using the equation 

given below 
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Step 4: These estimates for heat removal factor F0, loss 

coefficient UL, heat energy gain qu, and temperature rise 

 o iT T are then used in the following equation to 

compute the new mean plate temperature. 
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Step 5: This new mean plate temperature is compared with 

the previous value and the difference decides the further 

course of calculations. If difference is within acceptable 

limits, the process is terminated w hile if the difference is 

outside the tolerance limits the calculated value of Tp is 

used as revised value. 

Step 6: Using this revised value of mean plate temperature 

the above steps (1–5) are repeated till new and old values 

of mean plate temperature agree within specified limits. 

Step 7: When the correct plate temperature has been 

determined from this iterative procedure, the thermal 

performance of solar air heater is calculated by using the 

following expression. 
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The air properties can be calculated by the following 

equations [39] : 
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The characteristic dimension or equivalent diameter of 

duct is given by: 
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The pressure loss P  through the air heater duct, is [40] : 
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P
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
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According to Petela’s theory, the exact exergy income by 

solar radiation for a typical collector with surface area of 

pA becomes p pIA  . 
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p Is Petela’s efficiency of converting radiation energy 

into work  [41] : 
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The solar collector exergy efficiency defines the 

increase of fluid flow exergy upon the primary radiation 

exergy by the radiation source. The exergy efficiency is 

calculated as : 
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2.2. Economic Analysis 
The economic analysis allows choosing the 

economically feasible system. Under this heading, the 

optimum economic performance of these SAHs is 

expected to be determined based on the technical and 

economic. 

In order to determine the annual cost (AC) of the 

collector per unit surface area, the different cost factors 

have to be calculated. This include the annual pumping 

cost (RC), the annual collector cost (ACC), the annual 

maintenance cost (MC), and the annual salvage value 

(ASV) [42] 

 

AC RC ACC MC ASV     (21) 

 

The annual pumping cost is calculated as, [42] 
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Where opt  is the operational time (300days in year and 

8 hour in day), CE is the cost of electricity that was taken 

as 1 $0.
kWh

CE  , and ΔP is the pressure drop across 

flow channel that calculated in Eq 18. 

The annual collector cost is calculated as, 
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Where (CRF) is the capital recovery factor and 

calculated as, 

 

 

 

Where i is the interest rate and n is the collector life 

time and considered 0.1 and 10 years. 

The capital investment (CI) included material cost, 

paint cost, fabrication cost and absorber cost. 

The annual maintenance cost (MC) of the collector is 

considered to be 10 % of the annual collector cost (ACC). 

The annual salvage value (ASV) is calculated as, 

  ASV SFF SV  (25) 

 

Where (SFF) is the salvage fund factor and calculated as, 
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Now we can calculate AC for economic analysis. 

All the parameters we need are listed in Table.3. 

2.3. Multiobjective Optimization 
Multi-objective optimization has been applied in many 

fields of science, where optimal decisions need to be taken 

in the presence of trade-offs between two or more 

conflicting objectives.  

 

Table.2 The parameters of SAH  

Glazing  Double Glass  

Length of channel (c) (m)  2 ~ 3  

Width to length of channel ratio (a/c)  0.3 ~ 0.5  

Height to width of channel ratio (b/a)  1/12 ~ 1/8  
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https://en.wikipedia.org/wiki/Trade-off
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For a nontrivial multi-objective optimization problem, 

no single solution exists that simultaneously optimizes 

each objective. In this case, the objective function is 

minimizing cost of collector and maximize energy and 

exergy efficiency. To reach this goal, we use NSGA II 

algorithm in MATLAB software. For each geometry of 

rib-roughness, after optimization we have 200 data series 

with various energy and exergy efficiency and cost of 

collector. For find the best data, we use TOPSIS decision 

algorithm and weighing exergy and energy efficiency and 

cost of collector.  

3. Results & Discussion 
The equations used in this article have been adapted 

from other articles. To verify the results of this paper, 

validate these results with the results of other paper. 

Energy and exergy efficiency of SAH with roughened and 

smooth absorber plate in this article and Bisht [42] and 

Singh [32] papers. The validation results are shown in 

Tables 3-6. As can be seen in these tables the maximum 

error is 23.31%.  

The result of energy and exergy analysis of SAH 

indicated in the Table.7 and Table.8. 

In Figure 1, for example, the relationship between 

exergy efficiency and energy is shown for SAH with 

multi-v rib. With increasing energy efficiency, exergy 

efficiency decreases and vice versa. In this figure F1 axis 

show the energy efficiency and F2 show the exergy 

efficiency. In addition to these two parameters, the annual 

cost of the collector is also examined. 

In this 2 table we can see that the most effective 

parameter for energy and exergy efficiency is reynolds 

number. Also we can find that the other parameters are 

almost constant. The multi-objective analysis and 

optimization examines energy and exergy and cost of 

collector together. It is the best way to find best condition 

for SAH. 

Table3. Validation of energy efficiency of smooth SAH 

No .T I  [42]
th

  Recent Article
th

   Error 
% 

1 0.001 0.7395 0.728 1.56 

2 0.004 0.6136 0.5799 5.49 

3 0.006 0.6765 0.6612 2.26 

4 0.007 0.4994 0.4663 6.62 

5 0.008 0.634 0.6216 1.95 

6 0.01 0.3944 0.3713 5.87 

7 0.013 0.3006 0.2913 3.09 

8 0.016 0.2185 0.2226 1.88 

 
 

 

 
Table4. Validation of exergy efficiency of smooth SAH 

No P/e Re [47]ex  
       

Recent Article

ex  Error 

% 

1 

8 

320 0.00506 0.00529 4.62 

2 1065 0.00911 0.00897 1.54 

3 2200 0.01086 0.01053 3.06 

4 3017 0.1115 0.01072 3.85 

5 5360 0.01040 0.01003 3.56 

6 8044 0.00908 0.00897 1.19 

7 10960 0.00770 0.00786 2 

8 16100 0.00529 0.00652 23.31 

Table5. Validation of energy efficiency of roughened SAH 

No .T I  [42]
th

  Recent Article
th

   Error 

% 

1 0.001 0.7580 0.7729 1.96 

2 0.004 0.7167 0.7033 1.87 

3 0.006 0.6765 0.6612 2.26 

4 0.007 0.6586 0.6411 2.66 

5 0.008 0.634 0.6216 1.95 

6 0.01 0.5914 0.5791 2.07 

7 0.013 0.5241 0.523 0.2 

8 0.016 0.4599 0.4654 1.2 

 

Table6. Validation of exergy efficiency of roughened SAH 

No P/e Re [47]ex  
       

Recent Article

ex  Error 

% 

1 

8 

1067 0.01748 0.01789 2.32 

2 3099 0.01917 0.01932 0.77 

3 5000 0.01672 0.01691 1.11 

4 6800 0.01433 0.01476 2.99 

5 9318 0.01149 0.01255 9.26 

6 11860 0.00893 0.01074 20.27 

Table.7 Energy analysis of SAH with 4 different rib geometry on the absorber plate  

Rib parameters 
th  

% β  Vw a/c b/a c Ta Re p/e e/Dh W/w   d/w g/e BR PR 

Multi V 
Shape 

70 1 0.3 1/12 2 296 20000 8.105 0.043 6.2 60 - - - - 75.53 

U Shape 

Turbulator 
70 1 0.3 1/12 2 308 20000 6.667 0.043 - - - - - - 70.93 

Winglet and 

Wavy 
Grooves 

70 1 0.3 1/12 2 292 20000 - - - - - - 0.28 1 76.31 

Discrete V 

Rib 
70 1 0.3 1/12 2 293 20000 8.031 0.043 - 59 0.65 1.05 - - 76.43 

https://en.wikipedia.org/wiki/Nontrivial


 
Journal of  Solar Energy  Research Vol 5 No 1 Spring (2020) 390-399 

 

 

396 

 

Table.8 Exergy analysis of SAH with 4 different rib geometry on the absorber plate  

Rib  
parameters 

ex  

% β  Vw a/c b/a c Ta Re p/e e/Dh W/w   d/w g/e BR PR 

Multi V 

Shape 
70 1 0.3 1/12 2.3 290 2000 8.104 0.043 5.7 60 - - - - 1.8 

U Shape 

Turbulator 
70 1 0.3 1/12 2 290 2000 6.667 0.04 - - - - - - 1.4 

Winglet and 

Wavy 

Grooves 

70 1 0.3 1/12 2.91 290 2000 - - - - - - 0.27 1.2 2.36 

Discrete V 

Rib 
70 1 0.3 1/12 2 290 2000 8.031 0.043 - 58 0.65 1.05 - - 2.14 

 
 

 
Figure.1 Relationship between exergy efficiency and energy efficiency 

 

 

 
The result of this optimization indicated in the Table.5. 

According to table.5 annual puping cost (RC) is 

negligible so the pressure diference in SAH with rib-

roghness on its absorber plate is not a big value. In this 

work, when optimize data with NSGA II algorithm, it’s 

time to use TOPSIS algorithm to find the best data for each 

rib-roughness geometry. For Topsis algorithm and weiging 

the parameters respectively we use 0.45,0.35 and -0.2 for 

energy efficiency,exergy efficiency and annual cost of 

collector. This values can vary for your condition and 

priority. 

Also on Table.9 we can compare different rib-

roughness geometry effect on perfomance of SAH. The 

Multi-V rib has the best exergy efficiency and the discrete-

V rib has the best energy efficiency and also low annual 

cost. U-shape turbulator annual cost is the lowest but in 

comparision with discrete-V, the discrete-V rib has a better 

performance. 
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Table.9 Multiobjective optimization of SAH with four different rib-roughness geometry on the absorber plate 

Rib 
 AC ($) 

th  ex  AC ACC MC RC ASV 

Multi V 54.64 1.27 42.94 40.51 4.05 0.01 1.56 

U shape Turbulator 55.19 0.68 18.75 17.65 1.77 0.02 0.68 

Winglet and Wavy grooves 57.97 0.93 67 20.23 2.02 0.42 2.43 

Discrete V 58.81 1.01 22 23.74 2.37 0.04 0.78 

 

4. Conclusions 

One of the best forms of renewable energy is solar 

energy. In this article, we performed a multi-objective 

optimization to a SAH to reach the best condition of this 

device. Our objective for optimization is maximizing 

energy and exergy efficiency and minimizing annual cost 

of collector (AC). Also we use 4 different rib-roughnesses 

on absorber plate to improve the thermal performance of 

device. In this case of optimization, 15 parameters are 

considered such as wind velocity, Reynolds number, 

collector tilt, ambient temperature, collector dimension 

(length, width and height) and rib-roughness dimension. 

For optimization we choose NSGA II algorithm and 

find 200 data series of variable parameters. Any of these 

data have a good performance, but to find out the best one 

we should use a decision algorithm. For this purpose we 

use TOPSIS algorithm and weiging the objective (energy 

and exergy efficiency and AC) and find the best 

performance condition for this device. We saw the result 

of this optimization in Table.2 to Table.5 and discuss about 

that. We find out that the best rib geometry for this 

condition is discrete-V , that has the highest energy and 

exergy efficiency while it has the lowest annual cost. 

Our device work in iran and useful lifetime of SAH 

considered to be 10 year and interest rate is 0.1. 

We conclude that using the rib-roughness improves the 

performance of the device despite the pressure drop. Also 

the annual pumping power is very low and negligible and 

the main part of annual cost is for making device like 

materials, colors and fabrication cost. 
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