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1. Introduction  

 

The three-level boost-type converters shown in Fig. 1 

have the advantages of the low voltage stress, the low 

inductor current ripple and the low switching loss [12]. 
The idea of having circuits that generate three-level 

(TL) voltage waveforms can be traced back to two 

U.S. patents granted in the early 1960s [3], [4]. These 

TL circuits were invented for computer applications 

with the intention of transforming conventional 

computation methodology from binary logic form to 

ternary form. Later, Nabae et al. [5] and Baker1 [6] 

reported a different form of TL circuits specific to 

power conversion application in 1980 and 1981, 

respectively. The circuit is named the neutral-point-

clamped (NPC) inverter. In contrast to conventional 
power inverter, the phase leg of this inverter can  

 

but also the neutral-point  voltage. As a  result, the 

output voltage of the NPC inverter has lower 

harmonics as compared to that of traditional inverters 
[7]. This allows the use of a smaller output filter. 

Since the phase leg provides three levels of voltages, 

the NPC inverter is also called TL inverter. An 

additional advantage of the TL inverter is that the 

voltage stress of the switches is reduced to half of the 

input voltage, which makes it suitable for high input 

voltage power conversions [8]. This technique has 

been applied to dc–dc converters by Pinheiro and 

Barbi [9], [10] to reduce the voltage stress of the 

switches. The recent increase in the interfacing of 

renewable energy inverters are turn out to be the 
inevitable appliance for power conversion. The 

multilevel converter provides advantages such as 

lower harmonic distortion and reduction in dV/dt of 

the output voltage. The three-level boost (TLB) 
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A  B  S  T  R  A  C  T 

 
Using conventional boost converter in photovoltaic system as the interface between the 
photovoltaic panel and the consumer is widely practiced. In this paper, instead of using 
conventional boost converter, the three-level boost converter (TLBC) has been used. The 
advantages of TL converters include reduced voltage stress of the switches, reduced filter size, 
and improved dynamic response. However, the capacitor voltages may be different due to their 
mismatched equivalent series resistance, their mismatched capacitance, and the mismatched 
conducting time of the corresponding switches. This paper investigates the output control TLB 

converter for dc drive applications. A PI controller method is applied for adjusting the output 
voltage and internal generated voltage . That Kp and Ki gains set as well and output is very 
smooth and free of oscillation generated. On the other hand, the voltage can be controlled to 
transmit dc motor. A P controller method is then used for the individual capacitors voltage 
balancing. At the absence of control, voltage capacitors are also many differences. Simulation 
results show the high dynamic performance of the controller in adjusting the capacitors’ 
voltages and output control TLB converter. 
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converter has several advantages in high voltage 

applications such as reduced switching losses and 

lower reverse recovery losses of the diode [11]–[13] 

compared to the conventional boost converters. In 

[11], [12], [14] the circuit is employed and studied 

with a different approach for power factor correction 

by controlling the duty ratio of the switches. The 

maximum power point tracking by direct duty ratio 

control of TLB converter using a power hysteresis is 
presented in [13]. Independent control of TLB 

switches for balancing of dc-link capacitors is 

discussed in [15]. In [16] the SSPDC method is 

proposed for TLB circuit to balance the neutral point 

voltage with simulation results. Additionally, the 

paper considers only the three modes of operation of 

TLB.  

This paper propose output control TLB converter for 

dc drive applications Using photovoltaic module as the 

input power supply. A PI controller method is applied 

for adjusting the output and internal generated voltage. 

A P controller method is then used for the individual 
capacitors voltage balancing.  

The system, with a simple proportional-integral 

controller will be able to deliver any voltage to the 

output of the engine. In addition, if  voltage balancing 

control is not done, Causing damage to the equipment 

and the engine characteristic. 

Finally, Simulation results show the high dynamic 

performance of the controller in adjusting the 

capacitors’ voltages and output control TLB converter. 
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Figure 1.TLB converter with its capacitor voltage 

balancing control loop. 

 

2. Material and Methods 

2.1.  PV Panel Modeling 

The equivalent circuitry of a PV cell is shown in Fig. 

2, in which the simplest model can be represented by a 

current source in antiparallel with a diode. The 

nonidealities are represented by the insertion of the 

resistances Rs (series resistance) and Rp (parallel 

resistance). 

The PV panel simulation model is based on the output 

current of one PV equivalent model, and its 

mathematical equation is represented by: 
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where V represents the output PV voltage of one PV 

panel, Iph is the photocurrent, Ir is the saturation 

current, q is the electrical charge (1.6 × 10-19 C), η is 

the p-n junction quality factor, k is the Boltzmann 

constant (1.38 × 10-23 J/K), and T is the temperature 

(in kelvins). 

Equation (1) can be modified in order to present a null 

root when current I approaches the real PV current. 

So, (1) is rewritten (2) as a function of its own PV 

current 
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(2) 

 

Current I, with a null initial value, is utilized in an 
iterative process that approximates (2) of its root, 

being obtained by the Newton–Rhapson method (3), 

which seeks the zero of the differentiable function 
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Thus, the derivative of (2) is presented in 
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With the aforementioned equations, an embedded 

function to simulate a typical PV panel in 
MatLab/Simulink was created. 

The model was used as a voltage source, and the 

integrator represents the capacitance that stores the 

injected current from the PV panel. The PV electrical 

parameters are presented in Table  1. 

Figs 3-6, show the I-V and P-V characteristics of a 

typical PV module in different of temperatures and 

solar irradiance levels. 

The curves show clearly the nonlinear characteristics, 

and they are strongly influenced by climate changes. 

 
Table1. ELECTRICAL PARAMETERS OF THE PV 

CELL 

Maximum Power PMAX=83.1W 

Voltage at MPP VMPP=17.15V 

Current at MPP IMPP=4.85A 

Open Circuit Voltage VOC=21.2V 
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Short Circuit Current ISC=5.27A 

Temperature Coefficient 

of  Isc 

α=0.65*10-3A/oC 
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+

_

V
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Figure2.  Equivalent model of the PV panel 
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Figure3. P-V characteristics of a typical PV module 

for varied Temperatures. 
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Figure4. I-V characteristics of a typical PV module for 
varied Temperatures. 
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Figure5. P-V characteristics of a typical PV module 

for varied solar irradiances. 
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Figure6. I-V characteristics of a typical PV module for 

varied solar Irradiances. 
 

2.2. Characteristic of DC Motor 

The characteristic of a DC motor is govern by 

equation (5) : 
 

Ea= VA- IaRa                                                              (5) 

 

where VA is the applied voltage across the DC motor, 

Ia is the armature current, Ra is the armature 

resistance and Ea is the internal generated voltage. In 

normal operating condition, the armature current will 

increase with the applied voltage and the internal 

generated voltage remains constant. Turning speed of 

motor is directly proportional with internal generated 

voltage, showing in the equation (6): 
 

Ea = Køω                                                                   (6) 

 

Where ø is magnetic flux, ω is the turning speed of 

DC motor and K is a constant. Here the armature 

current is the same as the output current of the TLB 

convertor. 

 

2.3. TLB Converter 

Fig. 1. shows the TLB along with its control circuit. 

By assuming that the switching frequency fs is much 

larger than the line frequency f, the control signals 
vcont1 and vcont2 can be regarded as two constants within 

the switching period Ts = 1/fs . In addition, the ideal 

inductor and the ideal capacitors are assumed. That is, 

the inductor resistance and the Capacitors’ resistances 

are assumed to be zero. 

According to this figure, two triangular signals vtri1 

and vtri2 are interleaved by 180◦ .The conventional PI 

control generates the control signal vcont1, and then, the 

gate signalGT1 is generated from the comparison of the 

control signal vcont1 and the triangular signal vtri1 . 

After sensing both capacitor voltages, the voltage 
imbalance is detected and the conventional capacitor 

voltage balancing control (CVBC) generates the 

compensation signal Δvcont. Then, the other control 

signal vcont2 is obtained by adding the compensation 
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signal Δvcont to the control signal vcont1. The gate signal 

GT2 is obtained from the comparison of the control 

signal vcont2 and the triangular signals vtri2 . 

Due to the input inductor L and two diodes D1 and D2 

in the TLB converter, both switches can be conducting 

at the same time without the concern of the short 

circuit damage. As plotted in Fig. 7, there are four 

switching states in the TLB converter. 

As shown in Fig. 7(a), both switches are turned on in 
the switching state 1. Thus, the inductor voltage VL in 

the TLB converter equals the input voltage VL =Vpv 

and both capacitors supply energy to the load iC1= iC2 

= (−id ) < 0. 

In the switching state 2 in Fig. 7(b), the top switch 

turns on and the bottom switch turns off. The resulting 

inductor voltage VL equals the input voltage Vpv minus 

the bottom capacitor voltage VL = Vpv − VC2 . 

Additionally, the capacitor C1 supplies energy to the 

load iC1 = (−id ) < 0, but the capacitor C2 stores the 

energy from the input voltage iC2 = (iL − id ) > 0. 

Similarly, the resulting inductor voltage in Fig. 7(c) 
equals the input voltage minus the top capacitor 

voltage VL = Vpv − VC1. In the switching state 3, the 

top capacitor C1 is charged iC1 = (iL − id ) > 0, but the 

bottom capacitor C2 is discharged iC2 = (−id ) < 0. 

When both switches turn off in Fig. 7(d), the resulting 

inductor voltage equals the input voltage minus the 

output voltage VL = Vpv − Ea = Vpv − vC1 − vC2. The 

input voltage Vpv supplies the load current and charges 

both capacitors simultaneously iC1 = iC2 = (iL − id ) > 

0. All the capacitor currents in various switching states 

are tabulated in Table 2. 
The behavior of the TLB converter can be divided into 

two cases as shown in Fig. 8. In the case of 2 > vcont1 + 

vcont2 > 1, two switches may conduct at the same time 

within the switching period Ts and there are switching 

state 1, state 2, and state 3. 

In the other case of 1 > vcont1 + vcont2 > 0, only 

switching state 2, state 3, and state 4 exist. In the case 

of 2 > vcont1 + vcont2 > 1 in Fig. 8(a), the conducting 

times of the switching state 2 and the switching state 3 

are (1 – vcont2)Ts and (1 – vcont1)Ts , respectively. The 

remaining time for the switching state 1 is (vcont1 + 

vcont2 −1)Ts. Similarly, for the other case of 1 > vcont1 + 
vcont2 > 0 in Fig. 8(b), the conducting times of the 

switching state 2 and state 3 are vcont1 Ts and vcont2 Ts , 

respectively. The remaining time for the switching 

state 4 is (1 − vcont1 − vcont2)Ts. 
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Figure7. Possible switching states in the TLB 

converter: (a) state 1, (b) state 2, (c) state 3, and (d) 

state 4. 
 

Table2. CAPACITOR CURRENTS IN EACH 

STATE 

  State 

1 

State 

2 

State 

3 

State 

4 

 

1<vcont1+vcont2<2 

 

iC1 −iO  

< (0) 

−iO  

< (0) 

iL−iO  

> (0) 

 

iC2 −iO  

< (0) 

iL−iO  

> (0) 

−iO   
< (0) 

 

 

0<vcont1+vcont2<1 

 

iC1  −iO  

< (0) 

iL−iO  

> (0) 

iL−iO  

> (0) 

iC2  iL−iO  

> (0) 

−iO  

< (0) 

iL−iO  

> (0) 
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Figure8. Behavior of the TLB converter. (a) 2 > vcont1 

+ vcont2> 1and (b) 1 > vcont1 + vcont2 > 0. 
 

2.4. Capacitor Voltage Balancing Control 

In the TLB converter shown in Fig.1, an outer control 

loop with P controller is used to balance the two 

capacitors voltages. The controller output is added 

with vcont1 so as to both balance the capacitors’ 

voltages and makes Δvcont  zero to equalize the rate of 
vcont1 and vcont2. Without this control loop the individual 

capacitor voltage balancing will be lost and an 

unbalanced condition will occur in the output voltage 

at the network side.  

It follows that the voltage imbalance ΔvC = vC1 – vC2 

can be expressed as : 
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where Δvcont= vcont2 −vcont1. 

The equivalent voltage balancing loop with the 

conventional CVBC is plotted in Fig. 9 where the 

proportional controller (i.e., P controller) with the 
parameter KP is used. Thus, the closed-loop transfer 

function of the voltage imbalance ΔvC (s) becomes 
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As equation (8) is a first-order response with zero 

steady state error, the voltage imbalance would be well 
regulated to zero (ΔvC

* = 0). Therefore, the design of 
the conventional CVBC with simple P controller is 
able to balance the capacitor voltages. 

3. Simulation results 

 

In this section, the simulation results of the TLB 
converter are provided. System parameters are 

tabulated in Table 3. the capacitance-mismatch 

condition are helpful for the demonstration of the 

proposed CVBC. 
Fig. 10. shows the output voltage of 89V. As can 

be seen in the figure it reaches the steady state 
condition in 0.02 seconds and delivers a smooth output 
to the net. If the DC motor demands different voltages, 

it can achieve totally controlled voltages. The 
balanced capacitors’ voltages have also been shown in 
Fig. 11. 

Fig. 12 and 13 show the absence and presence of 

CVBC proposed for capacitor voltages. Fig. 12 shows 

the inequality of the voltages when CVBC is separated 

from the circuit. The capacitors’ voltages are 
completely separate and unequal. Fig. 13 shows 

magnify the voltage waveforms in the presence of 

CVBC. 

 

Figure9. Equivalent voltage balancing loop with the 
conventional CVBC. 

 

 

Table3. SIMULATED PARAMETERS OF TLB 

CONVERTER 

Input voltage 17.15V 

Output voltage 89V 

Inductor 75µH 

Carrier frequency 10KHz 

Capacitor C1=400µF, C2=420µF 

Voltage balance 
parameter 

KP=0.03 

Output voltage 

parameter 

KPV=0.2 ,KiV =0.001 

Resistance 200 Ohm 
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Figure10. Simulation result for the TLB converter at 
89v. 

4. Conclusion 

In this paper, A PI controller method is applied for 

adjusting the output and internal generated voltage. 

Also, the CVBC method for the TLB converter has 

been proposed. This method, generally, is conducted 
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in a complete controlled way for all output voltage 

levels, and for all levels, the capacitor voltage 

balancing is correctly done and can be delivered to the 

network or any other applications as second quadrant 

energy regeneration system in electric vehicle. 

simulation results show the high dynamic performance 

of the controller in adjusting the capacitors’ voltages 

and output control TLB converter. 
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Figure11. Capacitor voltage balance 
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Figure13. Capacitor voltages are magnified by CVBC 
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