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1. Introduction 

          The growing adoption of renewable energy 

sources, particularly photovoltaic (PV) systems, in 

modern networked distribution systems has 

significantly transformed the power sector. This 

transition has delivered substantial environmental 

benefits by reducing carbon emissions and fossil fuel 

 

A B S T R A C T 

This paper presents a Convolutional Neural Network–Long Short-Term Memory 

(CNN–LSTM) based intelligent adaptive control strategy for a DSTATCOM to 

enhance power quality in photovoltaic (PV)-integrated distribution networks. The 

proposed controller exploits CNN-based spatial feature extraction of voltage–current 

waveforms and LSTM-based temporal learning to address nonlinear and time-varying 

disturbances. Simulation and real-time hardware-in-the-loop (HIL) validation using an 

OPAL-RT platform confirm superior performance under dynamic irradiance (200–

1000 W/m²) and load variations (up to 50 kW). The DC-link voltage is tightly regulated 

within 758–764 V, with a maximum deviation below 3 V. Total Harmonic Distortion 

(THD) is reduced from 16.5–22.5% to 3.2–4.5%, achieving 79–82% harmonic 

suppression and compliance with IEEE-519 limits. The power factor improves from 

0.78–0.84 to 0.97–0.99, approaching unity. The proposed controller exhibits a fast 

dynamic response of 3.8 ms, outperforming PI, Fuzzy-PID, ANN, CNN, and LSTM 

controllers. Reactive power tracking errors remain below 2.7%, demonstrating high 

robustness and real-time adaptability for smart PV-integrated grids. 
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dependence, while also offering long-term economic 

advantages through lower operating costs and 

decentralized generation. Despite these advantages, 

the large-scale integration of PV systems introduces 

several technical challenges related to power quality. 

Common issues include voltage instability, reactive 

power imbalance, harmonic distortion, voltage 

flicker, poor power factor, and unbalanced loading 

conditions. These problems adversely affect system 

reliability and operational efficiency, and they hinder 

the seamless integration of renewable energy into 

existing grid infrastructures. 

          The challenges are more pronounced in weak 

radial distribution networks, which are highly 

sensitive to the stochastic and intermittent nature of 

solar energy generation. Fluctuations in solar 

irradiance and rapidly changing load demands can 

cause severe voltage and power quality disturbances, 

making conventional control approaches inadequate. 

To mitigate these issues, various power electronic 

compensating devices have been deployed. These 

include series compensators such as the Static 

Synchronous Series Compensator (SSSC) and 

Thyristor-Controlled Series Capacitor (TCSC), shunt 

compensators such as the Static VAR Compensator 

(SVC) and Distribution Static Synchronous 

Compensator (DSTATCOM), as well as hybrid 

devices like the Unified Power Quality Conditioner 

(UPQC) and Unified Power Flow Controller (UPFC). 

Among these solutions, the shunt-connected 

DSTATCOM has emerged as a particularly attractive 

option due to its superior capability to provide fast 

and flexible reactive power support. It effectively 

mitigates voltage fluctuations, reduces harmonic 

distortion, improves power factor, and ensures load 

balancing. However, the performance of 

DSTATCOM largely depends on the effectiveness of 

its control strategy. Traditional controllers such as 

Proportional–Integral (PI), fuzzy logic, and 

conventional Artificial Neural Networks (ANNs) 

have been widely used, but they often struggle in 

highly nonlinear, dynamic environments due to 

limited adaptability, poor prediction capability, and 

slower response to rapid changes. 

          To overcome these limitations, the proposed 

study introduces an intelligent adaptive control 

scheme for DSTATCOM based on a hybrid 

Convolutional Neural Network–Long Short-Term 

Memory (CNN-LSTM) architecture in PV-integrated 

distribution networks. CNNs are well suited for 

extracting spatial features from real-time voltage, 

current, and irradiance signals, while LSTM networks 

excel at capturing temporal dependencies and 

predicting future system behavior under rapidly 

varying solar and load conditions. The integration of 

these deep learning techniques enables accurate 

anticipation of compensation requirements and 

significantly enhances the dynamic response of the 

DSTATCOM. 

          The proposed CNN-LSTM-based control 

approach offers faster convergence, higher 

robustness, reduced Total Harmonic Distortion 

(THD), improved power factor correction, and stable 

DC-link voltage regulation compared to conventional 

methods. Moreover, it ensures compliance with 

IEEE-519 and IEC-61000 power quality standards. 

Overall, this intelligent adaptive DSTATCOM 

control strategy represents an important step toward 

AI-driven power quality management, supporting the 

development of stable, efficient, and resilient future 

smart grids with high renewable energy penetration. 

 

Figure 1. Block diagram for proposed research 

          Figure 1 illustrates the operational sequence of 

an intelligent adaptive DSTATCOM control system 

in a PV-integrated distribution network. In this 

configuration, the photovoltaic array and battery 

energy storage system supply DC power, which is 

converted to AC through a DC–AC converter and 

delivered to the Point of Common Coupling (PCC). 
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Voltage and current sensors installed at the PCC 

continuously measure system parameters. These 

signals are filtered and processed using a CNN–

LSTM framework to extract meaningful spatial and 

temporal features. The control unit identifies the 

operating mode of the system either grid-connected 

or islanded and accordingly activates intelligent 

controllers such as proportional–integral (PI) or 

sliding-mode controllers to generate pulse-width 

modulation (PWM) signals for the DSTATCOM. The 

DSTATCOM performs reactive power compensation 

and harmonic mitigation, thereby improving voltage 

stability and power factor. Continuous monitoring 

and adaptive control of power quality enhance overall 

grid performance, operational reliability, and 

resilience. 

          With the increasing penetration of photovoltaic 

systems in modern distribution networks, challenges 

related to accurate forecasting, fault detection, and 

power quality regulation have become more critical. 

These challenges necessitate intelligent hybrid 

approaches that combine deep learning techniques 

with Flexible AC Transmission System (FACTS)–

based controllers. To address temporal–spatial 

dependencies and forecasting inaccuracies caused by 

nonlinear meteorological variations, Wu et al. (2024) 

proposed a CNN–LSTM-attention model 

incorporating conventional solar term divisions, 

significantly improving PV power forecasting 

accuracy [1]. Similarly, Hu et al. (2024) enhanced 

forecasting performance by integrating neighboring 

station data through a CNN–LSTM attention 

architecture, demonstrating strong generalization 

under fluctuating irradiance conditions [2]. The 

effectiveness of two-stream CNN–LSTM models for 

extracting solar data trends was further validated by 

Alharkan et al. (2023) [5,9]. Ren et al. (2024) 

incorporated meteorological variables into CNN-

based structures to improve ultra-short-term 

forecasting accuracy [10], while Bui Duy et al. (2024) 

optimized LSTM input parameters to enhance 

prediction reliability [12]. 

          In the area of PV fault detection, Ledmaoui et 

al. (2024) employed CNN-based classification for 

real-time fault identification in PV panels, achieving 

high detection accuracy using PyQt5-based 

applications [3]. Regarding FACTS-assisted power 

quality enhancement, Chen et al. (2022) developed a 

smart-controlled DSTATCOM capable of effective 

voltage regulation and harmonic reduction in 

distribution networks [4]. Vali et al. (2025) further 

demonstrated that deep-learning-based controllers 

applied to parallel DSTATCOM systems 

significantly improved total harmonic distortion 

(THD), power factor correction, and dynamic 

compensation capability [6]. 

Comparative studies by Garcia et al. (2020) revealed 

that CNN–LSTM hybrid models outperform 

standalone CNN or LSTM approaches in classifying 

power quality disturbances, particularly under non-

stationary conditions [11]. These findings were 

reinforced by Bai et al. (2025), who integrated Fast S-

transform techniques with CNN–LSTM models to 

further enhance disturbance classification accuracy 

[17]. Comprehensive reviews, such as that by Kiasari 

and Aly (2025), highlight the growing role of AI-

based power quality control using FACTS devices, 

supporting the adoption of hybrid deep learning and 

adaptive controllers in smart grids [8]. 

          Despite these advances, a notable research gap 

remains in real-time adaptive DSTATCOM control 

under rapidly varying PV conditions using hybrid 

CNN–LSTM networks [21]. To address this gap, the 

proposed study introduces a CNN–LSTM-based 

intelligent adaptive DSTATCOM control strategy 

capable of extracting spatial–temporal features, 

predicting compensation requirements, and 

dynamically regulating voltage, suppressing 

harmonics, and balancing reactive power in PV-

integrated distribution networks. By leveraging deep 

learning, the proposed scheme enhances controller 

adaptability, reduces THD, improves power factor, 

and ensures superior operational stability, making it a 

promising solution for future AI-enabled smart grids 

[22,23]. 

2. Photovoltaic System 

          Photovoltaic (PV) system modeling plays a 

crucial role in the accurate analysis, design, and 

integration of solar energy into existing distribution 

networks, especially when PV systems are 

coordinated with intelligent power conditioning 

devices such as Distribution Static Synchronous 

Compensators (DSTATCOM) for power quality 

enhancement. A typical PV system consists of a solar 

array, a DC–DC converter equipped with Maximum 

Power Point Tracking (MPPT), a DC-link capacitor, 

and a DC–AC inverter. Together, these components 

convert variable solar irradiance into regulated, grid-

compatible electrical power [28]. 

          Dynamic modeling of PV systems involves 

representing the electrical behavior of PV cells under 

varying irradiance and temperature conditions. This 

includes the characterization of current–voltage (I–V) 

and power–voltage (P–V) curves, as well as the 

system response to transient operating conditions 

such as sudden load variations or grid disturbances. 

Due to the intermittent and stochastic nature of solar 
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energy, PV modeling must also account for 

fluctuations in output power, voltage instability, and 

the introduction of harmonics into the distribution 

network. These effects can significantly degrade 

power quality if not properly mitigated. 

 

 
 

Figure 2. Flowchart Block Diagram of Predictive 

Control  

 

          Figure 2 illustrates the block diagram of the 

predictive control strategy flowchart for a 

DSTATCOM in a PV-integrated distribution system. 

The solar array generates DC power, which is 

regulated using a DC–DC converter with Maximum 

Power Point Tracking (MPPT) and then converted 

into AC power through a PWM-controlled DC–AC 

inverter. The conditioned power is delivered to the 

Point of Common Coupling (PCC), where it 

interfaces with the distribution network and 

connected loads. A power quality analysis module 

continuously monitors voltage harmonics, sag/swell, 

and frequency deviations using FFT-based detection 

algorithms. Based on this assessment, mitigation 

devices such as active filters, STATCOM, and DVR 

are dynamically activated to enhance power quality 

and ensure real-time system stability [31]. 

         To ensure stable and reliable grid interaction, 

PV systems must be integrated with advanced control 

strategies and power electronic compensators. 

Devices such as DSTATCOM provide fast reactive 

power support, harmonic mitigation, and voltage 

regulation, thereby improving overall system stability 

[29]. The incorporation of artificial intelligence–

based controllers further enhance system 

performance by enabling adaptive decision-making 

under dynamic operating conditions. In particular, 

memory-driven machine learning models such as 

CNN–LSTM architectures improve real-time fault 

detection, adaptive signal filtering, and predictive 

reactive power compensation. The PV system 

modeling enables performance optimization, 

supports the development of robust control strategies, 

and forms the foundation for intelligent adaptive 

power quality enhancement in PV-integrated 

distribution networks. Such modeling is essential for 

achieving reliable, efficient, and resilient renewable 

energy–based power systems [30]. 

 

The current of a solar cell (equation-1) can be 

modeled as: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑠)

𝑛𝑘𝑇
) − 1]

−
𝑉 + 𝐼𝑅𝑠

𝑅𝑠
        (1) 

 

Where: 

I = PV cell output current (A) 

Iph = photocurrent proportional to irradiance 

I0 = diode saturation current 

q = electron charge (1.6 × 10⁻ ¹⁹  C) 

V = output voltage (V) 

Rs and Rsh = series and shunt resistances 

n = ideality factor 

T = temperature (K) 

 

The instantaneous power delivered by a PV cell 

(equation-2) is: 

P=VI                                           (2) 

 

        This forms the basis of P–V characteristics, 

essential for MPPT and UPQC reference generation. 

At the Maximum Power Point (MPP): 

 
𝑑𝑃

𝑑𝑉
= 

𝑑(𝑉𝐼)

𝑑𝑉
=  𝐼 +

𝑑𝐼

𝑑𝑉
                         (3)                  

This equation (equation-3) is used in Incremental 

Conductance (IC) MPPT algorithms. 
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Power Balance in Grid-Connected PV with 

DSTATCOM: 

PPV = PLoad + Ploss + PFilter             (4) 

where: 

PPV = power generated by PV 

PLoad = load demand 

PLoss = system and conversion losses 

PFilter = power handled by DSTATCOM (for 

harmonics) 

 

Harmonic distortion in PV-inverter output (equation-

5) is quantified as: 

    𝑇𝐻𝐷 =
√∑ 𝑉𝑛

2∞
𝑛=2

𝑉1
 𝑥 100%          (5)               

 

where:   V1 = RMS value of fundamental voltage 

Vn = RMS value of nth harmonic 

component 

 

          The generation of current in a photovoltaic 

system depends on the response of the solar cell to 

incident light, operating voltage, and internal 

resistance. When sunlight strikes the cell, it generates 

charge carriers that produce a flow of current, which 

is affected by resistive losses and the intrinsic 

properties of the semiconductor material [32]. The 

electrical power output of a PV cell is defined as the 

product of its voltage and current, forming the basis 

of the power–voltage (P–V) characteristic curve. This 

curve is essential for identifying the maximum power 

point, at which small variations in voltage do not 

significantly affect the output power [33]. In grid-

connected systems equipped with compensators, the 

generated power must balance the consumed power, 

including compensation losses. The voltage harmonic 

distortions are assessed by analyzing unwanted 

frequency components relative to the fundamental 

supply frequency [34].  

3. DSTATCOM Modeling for PV System 

 

          A Distribution Static Compensator 

(DSTATCOM) is a shunt-connected power electronic 

device used to regulate voltage, suppress harmonics, 

and improve power factor in distribution networks, 

especially those integrated with renewable energy 

sources such as solar photovoltaic systems. Its basic 

structure includes a voltage-source inverter, DC 

energy storage unit, coupling transformer, harmonic 

filters, sensing units, and control circuitry. The 

inverter converts the DC-link voltage into a 

controllable AC output with adjustable magnitude 

and phase, enabling dynamic injection or absorption 

of reactive power. During voltage sag conditions, the 

DSTATCOM supplies reactive power to support the 

grid, while under overvoltage conditions it absorbs 

reactive power to maintain system stability and 

enhance overall power quality [35]. 

 

Figure 3. Block diagram of DSTATCOM 

          Figure 3 depicts the simple plan of a 

DSTATCOM coupled with an electrical network. It 

is connected to the distribution bus by a coupling 

transformer, which offers the electrical isolation and 

allows the introduction of compensating currents. 

The company of the DSTATCOM is a Voltage 

Source Converter (VSC) that changes DC power into 

controlled AC signals to control reactive power. The 

VSC requires the DC voltage supplied by the DC 

energy storage, usually a capacitor or battery. 

DSTATCOM increases the stability of voltages and 

the quality of power by injecting or absorbing 

reactive power that provides reliable supply of power 

to the sensitive load downstream. 

DC-Link Voltage Dynamics of DSTATCOM: 

𝐶𝑑𝑐
𝑑𝑉𝑑𝑐

𝑑𝑡
= 

𝑃𝑖𝑛𝑣−𝑃𝑙𝑜𝑎𝑑

𝑃𝑑𝑐
                        (6)        

𝐶𝑑𝑐 is the DC-link capacitor that stores energy, while 

𝑉𝑑𝑐 is its voltage. 𝑃𝑖𝑛𝑣  is the active power injected by 

inverter (from PV or grid), and 𝑃𝑙𝑜𝑎𝑑  is the consumed 

load power. 
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This relationship is used in voltage regulation, control 

design, and DC-link stability analysis. 

Instantaneous Active and Reactive Power (αβ frame): 

   𝑆 = 𝑃 + 𝑗𝑄 =  
3

2
(𝑣𝛼𝑖𝛼 + 𝑣𝛽𝑖𝛽)

+  𝑗
3

2
(𝑣𝛽𝑖𝛼 − 𝑣𝛼𝑖𝛽)      (7)   

Here, 𝑣𝛼, 𝑣𝛽 and 𝑖𝛼, 𝑖𝛽 are voltage and current in the 

stationary αβ reference frame. The active power PPP 

denotes real power transfer, while reactive power 

QQQ indicates compensation requirement. This is 

used in instantaneous power theory (p–q control) to 

generate compensation current reference for 

DSTATCOM. 

State-Space Model of DSTATCOM (dq Domain): 

𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞
𝑣𝑑𝑐

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑠
𝜔 0

−𝜔
𝑅𝑠

𝐿𝑠
0

0 0 −
1

𝑅𝑑𝑐𝐶𝑑𝑐]
 
 
 
 

[
𝑖𝑑
𝑖𝑞
𝑣𝑑𝑐

] +

[
 
 
 
 

1

𝐿𝑠
𝑣𝑑

1

𝐿𝑠
𝑣𝑞

1

𝐶𝑑𝑐
𝐼
𝑖𝑛𝑣]

 
 
 
 

(8) 

The above equation (8) is used for stability, system 

modeling, and control design. 

Voltage Regulation Support by DSTATCOM: 

𝛥𝑉 =  
𝑋𝑠𝑦𝑠𝑡𝑄𝑐𝑜𝑚𝑝

𝑉
           (9) 

This equation (9) determines the voltage boost 

achieved via VAR compensation. 

LCL Filter Resonant Frequency for DSTATCOM 

(equation-10): 

𝑓𝑟𝑒𝑠 =  
1

2𝜋
√

𝐿1+𝐿2

𝐿1𝐿2𝐶𝑆
     (10)     

where 𝑓𝑟𝑒𝑠 Resonant frequency of the LCL filter (Hz),  

𝐿1 Inverter-side inductance (H) and 𝐿2 Grid-side (or 

line-side) inductance (H) and 𝐶𝑆Filter capacitance 

connected between phases and ground (F). 

The supply voltage is represented as(equation-11): 

𝑣𝑠(𝑡) = 𝑉𝑚𝑠𝑖𝑛(𝜔𝑡)                                (11)                          

Load voltage (equation-12) distorted due to 

harmonics: 

𝑣𝐿(𝑡) =  𝑣𝑠(𝑡) −  𝑣𝑠𝑒(𝑡)                      (12)                    

where 𝑣𝑠𝑒(𝑡) = injected series compensating voltage. 

Load current (equatin-13) consists of fundamental + 

harmonic + reactive components: 

𝑖𝐿(𝑡) =  𝑖𝐿𝑓(𝑡) +  𝑖𝐿ℎ(𝑡) + 𝑖𝐿𝑞(𝑡)              (13)       

The shunt active filter injects current 𝑖𝑠ℎ(𝑡) so that: 

𝑖𝐿(𝑡) =  𝑖𝑠(𝑡) −  𝑖𝑠𝑒(𝑡)                                (14)                         

For the shunt converter connected to PCC: 

𝐿𝑠ℎ(𝑡)
𝑑𝑖𝑠ℎ
𝑑𝑡

+ 𝑅𝑠ℎ𝑖𝑠ℎ = 𝑣𝑖𝑛𝑣,𝑠ℎ − 𝑣𝑝𝑐𝑐                   (15) 

where: 𝐿𝑠ℎ(𝑡) and 𝑅𝑠ℎ = filter inductor parameters, 

𝑣𝑖𝑛𝑣,𝑠ℎ = inverter output voltage, 𝑣𝑝𝑐𝑐 = point of 

common coupling voltage. 

 

For the series converter dynamics: 

𝐿𝑠𝑒(𝑡)
𝑑𝑖𝑠𝑒

𝑑𝑡
+ 𝑅𝑠𝑒𝑖𝑠𝑒 = 𝑣𝑠 + (𝑣𝑖𝑛𝑣,𝑠𝑒 − 𝑣𝐿)       (16)    

where 𝑣𝑖𝑛𝑣,𝑠𝑒 is the injected series inverter voltage. 

The common DC-link capacitor voltage dynamics: 

𝐶𝑑𝑐(𝑡)
𝑑𝑉𝑑𝑐

𝑑𝑡
=

1

𝑉𝑑𝑐

(𝑃𝑠ℎ + 𝑃𝑠𝑒 − 𝑃𝑙𝑜𝑠𝑠)                (17) 

where: 𝑃𝑠ℎ = power handled by shunt converter, 𝑃𝑠𝑒= 

power handled by series converter. 𝑃𝑙𝑜𝑠𝑠 = internal 

losses. 

Using proposed controller, the common DC link 

capacitor dynamics: 

𝑉𝑑𝑐[𝑘 + 1] =  𝑉𝑑𝑐[𝑘] + 
𝑇𝑠

𝑉𝑑𝑐𝐶𝑑𝑐[𝑘]
 (𝑃𝑠ℎ[𝑘] + 𝑃𝑠𝑒[𝑘]) 

(18) 

where 𝑃𝑠ℎ[𝑘] and 𝑃𝑠𝑒[𝑘] are instantaneous powers of 

shunt and series converters. Using Instantaneous 

Power Theory (p-q Theory): 
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Clarke Transformation (abc → αβ0): 

 

[

𝑣𝛼

𝑣𝛽

𝑣0

] = 𝑇𝑐 [

𝑣𝑎

𝑣𝑏

𝑣𝑐

]      𝑊𝑖𝑡ℎ 𝑇𝑐

[
 
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

3

1

3

1

3 ]
 
 
 
 
 

  (19)     

 

Inverse Clarke Transformation (αβ0 → abc): 

[

𝑣𝑎

𝑣𝑏

𝑣𝑐

] =  𝑇𝑐
−1 [

𝑣𝛼

𝑣𝛽

𝑣0

]   𝑊𝑖𝑡ℎ  𝑇𝑐
−1

[
 
 
 
 
 
 

2

3
0 1

−
1

3

1

√3
1

−
1

3
−

1

√3
1
]
 
 
 
 
 
 

(20)  

Park Transformation (αβ → dq) — rotation by 

electrical angle θ: 

 

[

𝑣𝑑

𝑣𝑞

𝑣0

] = 𝑇𝑐(𝜃) [

𝑣𝛼

𝑣𝛽

𝑣0

]𝑤𝑖𝑡ℎ𝑇𝑐(𝜃) [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 −𝑠𝑖𝑛𝜃 0
0 0 1

] 

   

                                                                            (21) 

 

Inverse Park Transformation (dq0 → αβ0): 

 

[

𝑣𝛼

𝑣𝛽

𝑣0

] =  𝑇𝑝(−𝜃) [

𝑣𝑑

𝑣𝑞

𝑣0

] =  𝑇𝑝(𝜃)−1 [

𝑣𝑑

𝑣𝑞

𝑣0

]      (22) 

 

Composite abc → dq0 (single-step): 

 

[

𝑣𝑑

𝑣𝑞

𝑣0

] = 𝑇𝑝(𝜃)𝑇𝑐 [

𝑣𝑎

𝑣𝑏

𝑣𝑐

] = 𝑇𝑝𝑐(𝜃) [

𝑣𝑎

𝑣𝑏

𝑣𝑐

]         (23)                   

 

Discrete-time Park rotation (useful in digital 

controllers/PLL): 

 

[
𝑣𝑑[𝑘]

𝑣𝑞[𝑘]
] =  [

𝑐𝑜𝑠𝜃[𝑘] 𝑠𝑖𝑛𝜃[𝑘

−𝑠𝑖𝑛𝜃[𝑘 𝑐𝑜𝑠𝜃[𝑘]
] [

𝑣𝛼[𝑘]

𝑣𝛽[𝑘]
]           (24)            

 

dq frame derivative relation (useful for dynamic 

control/observer design): 

 

𝑑

𝑑𝑡
[
𝑣𝑑

𝑣𝑞
] = [

ύ𝛼𝑐𝑜𝑠𝜃 + ύ𝛽𝑠𝑖𝑛𝜃

−ύ𝛼𝑠𝑖𝑛𝜃 + ύ𝛽𝑠𝑖𝑛𝜃
] − 𝜔 [

0 −1
1 0

] [
𝑣𝑑

𝑣𝑞
] 

                                                                             (25) 

where ω = θ˙ (electrical angular speed). 

 

Instantaneous active/reactive power in αβ frame (p–q 

theory) used for reference calculation: 

 

p= vα iα + vβ iβ,     q = vβ iα − vα iβ                       (26) 

 

Reference current generation (dq control → αβ → 

abc) typical APF flow: 

[

𝑖𝑎
∗

𝑖𝑏
∗

𝑖𝑐
∗
] = 𝑇𝑐

−1𝑇𝑝(−𝜃) [

𝑖𝑑
∗

𝑖𝑞
∗

𝑖0
∗

]                                      (27)                                    

where 𝑖𝑑
∗  , 𝑖𝑞

∗   are set by controllers. 

 

Practical discrete Clarke with zero-sequence removal 

(samples per step k) implemented for smooth 

operation of proposed controller using UPQC: 

 

𝑣0[𝑘] =  
1

3
(𝑣𝑎[𝑘] +  𝑣𝑏[𝑘] +  𝑣𝑐[𝑘])                    (28) 

𝑣𝛼[𝑘] = (𝑣𝑎[𝑘] −  𝑣0[𝑘])                                        (29) 

𝑣𝛽[𝑘] =
1

√3
(𝑣𝑏[𝑘] − 𝑣𝑐[𝑘])                                   (30) 

Overall Compensation Condition the DSTATCOM 

ensures: 

𝑣𝐿(𝑡) ≈ 𝑉𝑚𝑠𝑖𝑛(𝜔𝑡) (sinusoidal load voltage) 𝑖𝐿(𝑡) ≈
𝐼𝑚𝑠𝑖𝑛(𝜔𝑡) (sinusoidal source current) 

The Linear discrete-time update (explicit 

coefficients) for the DSTATCOM design for the 

proposed controller: 

𝑖𝑑[𝑘 + 1] =  (1 −
𝑇𝑠𝑅𝑓

𝐿𝑓
) 𝑖𝑑[𝑘] + 𝑇𝑠𝜔𝑖𝑞[𝑘] +

𝑇𝑠

𝐿𝑓
𝑣𝑐𝑜𝑛𝑣,𝑑[𝑘] −

𝑇𝑠

𝐿𝑓
𝑣𝑐𝑜𝑛𝑣,𝑑𝑠[𝑘]   (31)   

𝑖𝑞[𝑘 + 1] =  −𝑇𝑠𝜔𝑖𝑞[𝑘] + (1 −
𝑇𝑠𝑅𝑓

𝐿𝑓
) 𝑖𝑞[𝑘] +

𝑇𝑠

𝐿𝑓
𝑣𝑐𝑜𝑛𝑣,𝑞[𝑘] −

𝑇𝑠

𝐿𝑓
𝑣𝑐𝑜𝑛𝑣,𝑠𝑞[𝑘]    (32)  

𝑣𝐿𝑑[𝑘 + 1] =  𝑣𝐿𝑑[𝑘] +
𝑇𝑠

𝐶𝑓
𝑖𝑠𝑒,𝑑[𝑘] −

𝑇𝑠

𝐶𝑓
𝑖𝐿,𝑑[𝑘]  (33)    

𝑣𝐿𝑞[𝑘 + 1] =  𝑣𝐿𝑞[𝑘] +
𝑇𝑠

𝐶𝑓
𝑖𝑠𝑒,𝑞[𝑘] −

𝑇𝑠

𝐶𝑓
𝑖𝐿,𝑞[𝑘] (34)              

𝑉𝑑𝑐[𝑘 + 1] =  𝑉𝑑𝑐[𝑘] + 
𝑇𝑠

𝑉𝑑𝑐𝐶𝑑𝑐[𝑘]
 (𝑃𝑠ℎ[𝑘] + 𝑃𝑠𝑒[𝑘])                   

(35) 

where first four equations are linear in the states and 

inputs; the DC-link update is nonlinear because the 

power terms divide by 𝑉𝑑𝑐[𝑘]. 
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          The above mathematical formulations describe 

the modeling and control mechanism of a 

DSTATCOM in a PV-integrated distribution system, 

highlighting the interaction between network 

voltages, currents, and the compensator for power 

quality enhancement. Nonlinear loads introduce 

harmonic distortion and reactive power components, 

which adversely affect system voltage and current 

waveforms. The DSTATCOM generates 

compensating currents to suppress these harmonics 

and to maintain sinusoidal source current and voltage 

profiles. Through its series converter, the device 

corrects voltage imbalances, sags, and swells, while 

the shunt converter injects reactive and harmonic 

compensating currents into the system. Both 

converters are supported by a common DC-link 

capacitor that stabilizes energy during dynamic 

compensation processes. System voltages and 

currents are transformed into rotating reference 

frames to decouple active and reactive components, 

enabling accurate and efficient control. Hence 

instantaneous power theory is applied to compute real 

and reactive power, facilitating real-time generation 

of compensation signals for precise voltage and 

current regulation [36]. 

4. Proposed Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) 

networks 

          The integration of a Convolutional Neural 

Network–Long Short-Term Memory (CNN–LSTM) 

hybrid framework offers a robust, data-driven, and 

adaptive approach for power quality (PQ) 

enhancement in PV-integrated distribution systems. 

In this study, the CNN is trained using time–

frequency representations of voltage and current 

signals obtained through Short-Time Fourier 

Transform (STFT)–based spectrograms. The signals 

are sampled at 10 kHz with a window length of 1,024 

samples and 50% overlap to ensure accurate 

frequency–time resolution. The training dataset 

comprises 12,000 labeled PQ events, including 

harmonic distortions with total harmonic distortion 

(THD) ranging from 5% to 25%, voltage sags with 

depths of 10–40%, voltage swells with magnitudes of 

10–30%, and normal operating conditions, each 

represented by 3,000 samples. 

          The CNN architecture consists of three 

convolutional layers with 32, 64, and 128 filters, 

respectively, followed by max-pooling layers to 

extract discriminative spatial and spectral features 

without reliance on handcrafted filters. The resulting 

feature vectors are supplied to an LSTM network with 

two hidden layers and 100 memory units, trained on 

sequences of 200-time steps. This structure 

effectively captures temporal dependencies caused by 

fluctuating solar irradiance (200–1,000 W/m²) and 

dynamic load variations (0.5–1.5 p.u.). Within the 

control framework, the CNN–LSTM acts as an 

intelligent supervisory layer that classifies PQ 

disturbances and predicts their evolution. The 

generated outputs provide reference compensation 

signals for the UPQC controller, enabling adaptive 

real-time mitigation. The proposed approach achieves 

over 97% classification accuracy and reduces PQ 

response latency to less than 20 ms, confirming its 

suitability for real-time control applications [37]. 

 

 
 

Figure 4. Architecture of Convolutional Neural 

Network (CNN) 

 

          The Convolutional Neural Network (CNN) 

architecture shown in Figure 4 illustrates the main 

stages of information processing from input to output. 

Raw input signals, such as distorted power system 

voltage and current waveforms, are applied to the 

input layer. These signals pass through multiple 
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convolutional layers, where learned filters extract 

significant features including harmonic distortion, 

voltage sags, swells, and transient disturbances. 

Pooling layers reduce dimensionality while 

preserving key features, and the final layers generate 

feature representations suitable for accurate 

classification and control decision-making. 

 

 
 

Figure 5. Internal Architecture of Long Short-Term 

Memory (LSTM) Network 

 

         Figure 5 shows the internal architecture of a 

Long Short-Term Memory (LSTM) cell, which is 

partly developed to successfully model long term 

dependencies in sequential data. LSTM cell functions 

on three major gates comprising the forget gate, the 

input gate and the output gate. The forget gate decides 

what information of last cell state (ct) is to be 

forgotten. The input gate, comprised of a sigmoid and 

tanh activation, determines what new information is 

to be added to the current input (xt) and prior hidden 

state ht) in order to update the cell state (c ct). It is 

then controlled by the output gate on the extent to 

which the updated cell state is added to the next 

hidden state (ht) on which a prediction is made or 

additional calculations are made. 

 

Control objective (cost function to minimize): 

 

J = α1THD + α2 ∥Vdc−Vdc∗∥2 + α3 PF_error     (36) 

 

Composite loss for optimization; CNN-LSTM is 

trained/adjusted to minimize J.αi are weighting 

scalars, Vdc∗ desired DC voltage. 

 

CNN convolution operation (1D conv over signal 

window x): 

 

(f ∗  x)[n]  = ∑ 𝑓[𝑚]𝑥[𝑛 − 𝑚]𝑀−1
𝑚=0                       (37)         

 

Discrete convolution; CNN filters f extracts local 

spectral/spatial features from sampled waveform 

window x[n]. 

 
 

Figure 6. Block Diagram and Flowchart of CNN-

LSTM Hybrid Model 

 

          Figure 6 illustrates the proposed CNN–LSTM 

hybrid learning model developed to enhance power 

quality in photovoltaic (PV)-integrated distribution 

networks through intelligent control of a 

DSTATCOM. The process begins with the real-time 

acquisition of grid voltage and current signals at the 

Point of Common Coupling. These signals are 

continuously monitored to detect common power 

quality disturbances such as voltage sags and swells, 

harmonic distortion, flicker, and load unbalance. 



Manjur Elahi et al./Journal of Solar Energy Research Volume 11 Number 1 Winter (2026) 2780-2801 

2789 

 

Since raw measurements are often affected by noise 

and scaling variations, the collected data first undergo 

normalization and noise filtering to ensure reliable 

and consistent input to the learning framework. 

          The pre-processed signals are then supplied to 

the Convolutional Neural Network (CNN) module, 

which is responsible for extracting spatial and 

frequency-domain features from the waveform data. 

By scanning the signals in small segments using 

convolutional filters, the CNN automatically 

identifies characteristic patterns associated with 

power quality disturbances, such as harmonic 

signatures and voltage fluctuation profiles. Through 

successive convolution and pooling operations, the 

dimensionality of the data is reduced while 

preserving the most relevant disturbance-related 

features, enabling efficient and accurate feature 

representation without the need for handcrafted signal 

processing techniques. 

          The extracted feature vectors are subsequently 

fed into the Long Short-Term Memory (LSTM) 

network, which is designed to capture temporal 

dependencies in time-varying signals. The LSTM 

analyzes how power quality disturbances evolve over 

time by learning from historical and real-time patterns 

influenced by fluctuating solar irradiance and 

dynamic load conditions. This temporal learning 

capability allows the model to predict future 

disturbance trends and corresponding compensation 

requirements with high accuracy. By retaining 

relevant information through its memory cells and 

selectively forgetting irrelevant data, the LSTM 

enhances the predictive capability of the overall 

control system. 

          Following the LSTM stage, the processed 

outputs are passed through a fully connected layer 

that performs regression to estimate optimal reference 

compensation signals. These signals represent the 

required reactive power support and harmonic 

compensation needed to maintain grid voltage 

stability and power quality. The DSTATCOM control 

unit uses these reference signals to generate Pulse 

Width Modulation (PWM) switching pulses for the 

Voltage Source Converter. As a result, the 

DSTATCOM injects or absorbs reactive power and 

compensating currents in real time, enabling effective 

harmonic suppression, voltage regulation, and power 

factor improvement. The CNN–LSTM hybrid model 

combines the strong feature extraction capability of 

CNNs with the temporal prediction strength of 

LSTMs, forming a robust and adaptive solution for 

power quality management. The mathematical 

formulations governing the model ensure real-time 

operation, fast convergence, and adaptability to 

changing grid conditions. By significantly reducing 

Total Harmonic Distortion and improving voltage 

stability, the proposed CNN–LSTM-based 

DSTATCOM control strategy enhances the reliability 

and resilience of PV-integrated smart distribution 

networks, making it well suited for future intelligent 

power systems [38]. 

 

Feature map activation (after conv + nonlinearity): 

ℎ(𝑙)[𝑛] =  𝜎((𝑓(𝑙) ∗ 𝑥)[𝑛] + 𝑏(𝑙)                           (38)                           
 

Each conv layer 𝑙 applies filter, bias 𝑏(𝑙), then 

nonlinear activation σ. Output is used as input 

sequence to LSTM. 

 

LSTM cell equations (per time step t): 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                                 (39)                               

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑖 + 𝑈𝑖ℎ𝑖−1 + 𝑏𝑖)                                    (40)                                 

Č𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝐻𝑡−1 + 𝑏𝑐)                          (41)                        

𝑐𝑡 = 𝑓𝑡ʘ 𝑐𝑡−1 + 𝑖𝑡ʘ𝑐𝑡                                               (42) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                                 (43)                                                    

ℎ𝑡 = 𝑜𝑡  ʘ 𝑐𝑡−1 + tanh ʘ 𝑐𝑡                                     (44) 

Standard LSTM gating equations: forget 𝑓𝑡, input 𝑖𝑡, 
candidate 𝑜𝑡, cell state 𝑐𝑡, output gate 𝑜, hidden state 

ℎ. Here 𝑥𝑡 are CNN-extracted features at time step t. 

 

The conventional NN LSTM weight update equation 

is given as: 

𝝎(𝑛 + 1) = 𝝎(𝑛) + 𝜇𝑒(𝑛)𝑥(𝑛)                          (45) 
where w(n) is the filter weight vector, μ is the step-

size parameter, e((n) is the error signal, and x(n) is the 

input vector.  

 

In CNN, an error term is introduced to avoid 

instability: 

 

𝝎(𝑛 + 1)  =  (1 − 𝜇𝛾) 𝝎 (𝑛)  +  𝜇𝑒(𝑛)𝑥(𝑛)     (46) 

 where γ is the leakage factor.  

This provides better tracking performance and 

ensures stable adaptation, especially under non-

stationary conditions of PV output and grid 

disturbances. 

The error function minimized during ANN training is 

the Mean Squared Error (MSE): 

 

𝐸 =
1

𝑁
∑(𝑑(𝑛) − 𝑦(𝑛))

2
𝑁

𝑛=1

                                     (47) 

where d(n) is the desired response, y(n) is the ANN 

output, and N is the number of training samples.  

The forward propagation of ANN outputs can be 

mathematically expressed as: 
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𝑦𝑗 =  𝑓 (∑𝝎𝑖𝑗𝑥𝑖

𝑚

𝑖=1

+ 𝑏𝑗)                                      (48) 

 

where xi are the input signals, ωij the connection 

weights, bj the bias term, and f (⋅) the activation 

function (sigmoid, ReLU, or tanh). 

           

           The shunt inverter eliminates harmonics and 

regulates DC-link voltage, while the series inverter 

compensates for voltage sags/swells [19]. Using the 

instantaneous power theory, the reference active and 

reactive power components are computed as: 

 

𝑝(𝑡)  =  𝑣𝛼𝑖𝛼 +  𝑣β𝑖𝛽                                             (49) 

𝑞(𝑡)  =  𝑣𝛼𝑖𝛽 −  𝑣𝛽𝑖𝛼                                             (50) 

 

where vα, vβ and iα, iα, iβ are the α–β transformed 

voltages and currents.  

ANN forward model (single hidden layer, vector 

form): 

 

𝑦(𝑡) = 𝜙(𝑊2
𝑇𝜎(𝑊1

𝑇𝑥(𝑡) + 𝑏1) + 𝑏2)                  (51) 
where x(t) = input vector (voltages/currents/errors/PV 

measurements), W1, W2 = weight matrices, σ(⋅) = 

hidden activation, ϕ(⋅) = output activation. 

 

Instantaneous control error (for ANN output): 

 

𝑒(𝑡) = 𝑦𝑟𝑒𝑓(𝑡) − 𝑦(𝑡)                                              (52) 

 

where yref(t) are desired current/voltage references for 

the UPQC. 

 

Leaky-regularized instantaneous cost (mean-square 

form): 

 

𝐽(𝑡)  =
1

2
∥ 𝑒(𝑡) ∥2+

𝜆

2
(∥ 𝑊1 ∥𝐹

2+∥ 𝑊2 ∥𝐹
2)        (53) 

λ>0 is the leakage (weight-decay) coefficient; ∥⋅∥F is 

the Frobenius norm. 

 

Discrete leaky-LMS weight update (matrix form): 

 

  𝑊𝑘+1 = (1 − 𝜂𝜆)𝑊𝑘 + 𝜂𝛥𝑊𝑘; 𝛥𝑊𝑘 = 𝑥𝑘𝑒𝑘
𝑇 𝜕𝑦𝑘

𝜕𝑢𝑘
                          

                                                                             (54)            

where η is step size, ∂y/∂u is the local Jacobian 

mapping ANN internal outputs u to y (chain-rule 

term). 

 

Control law mapping ANN output to inverter 

reference (shunt branch): 

𝑖𝑠ℎ,𝑟𝑒𝑓(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑦(𝑡)                                      (55)                             

where ish,ref  is the shunt inverter current reference, and 

Kp is a proportional gain matrix (hybrid ANN + 

conventional term). 

 

THD objective (to be minimized by controller): 

 

    𝑇𝐻𝐷 =
√∑ 𝑉𝑛

2∞
𝑛=2

𝑉1
 𝑥 100%          (56)  

 

where: 

V1 = RMS value of fundamental voltage 

Vn = RMS value of nth harmonic component 

 

Lyapunov candidate and continuous adaptive law 

(stability-driven): 

𝑉(𝑡) =
1

2
 ( ∥ 𝑒(𝑡) ∥2 +  

1

2𝛾
 ∥ 𝑊(𝑡) − 𝑊∗ ∥𝐹

2   (57) 

Ẇ(t)  =  −γx(t) 𝑒(𝑡)𝑇

−  λW(t)                            (58) 

where γ>0 is an adaptation gain, W∗ an (unknown) 

ideal weight; the −λW term is leakage for 

boundedness. 

 

Projection operator to enforce actuator (inverter) and 

parameter bounds: 

 

Ẇ(t)  =  𝑃𝑟𝑜𝑗𝛺(−γx(t)  𝑒(𝑡)𝑇

−  λW(t))            (59) 

ProjΩ(⋅) projects the weight update onto admissible 

set Ω (keeps W within physically meaningful bounds; 

ensures ∣u∣ ≤ Umax. 

 

Combined UPQC (series + shunt) compensation 

constraint (power balance / reference synthesis): 

 

𝑣𝑠(𝑡) = 𝑣𝑙(𝑡) + 𝑍𝑠𝑖𝑠(𝑡)    (series branch)          (60)               

𝑖𝑠ℎ,𝑟𝑒𝑓(𝑡) = 𝑖𝑙(𝑡) − 𝑖𝑙𝑜𝑎𝑑,𝑐𝑜𝑚𝑝(𝑡)                           (61) 

𝑣𝑠ℎ,𝑟𝑒𝑓(𝑡) = −𝑍𝑙 (𝑖𝑙(𝑡) − 𝑖𝑠ℎ,𝑟𝑒𝑓(𝑡))                   (62)                   

 

where vs  = source voltage, vℓ = load voltage, Zs, Zℓ 

are series and load impedances; these equations link 

ANN-generated references to actual series/shunt 

injections so active compensation reduces harmonics 

and corrects voltage sags/swells. 

          

         The mathematical expressions explain the 

understanding of the CNNLSTM hybrid model in the 

design of the DSTATCOM to control smartly in the 

enhancement of power quality in PV integrated 

distribution networks. The model starts with picking 

voltage and current waveforms which contain 

distortions like harmonics, sags, swells and 

unbalanced currents. The CNN component of the 
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model examines such signals in a scanning of small 

structures and detecting significant spatial features 

that show distortion patterns. These features that can 

be extracted are useful to determine the disturbances 

in power quality with high precision. These 

characteristics are then transmitted to the LSTM 

element that is specialized in learning temporal 

trends. 

 It monitors the changes in the distortions with time, 

which assists in foreseeing the disturbances and 

compensation requirements in the future by the 

model. LSTM stores the appropriate information 

about the past and dismisses the insignificant details 

through internal memory mechanisms and provides 

relevant information, which allows making an 

accurate forecast of compensating reference currents. 

The last layer of the model receives the processed 

information and provides the control signals to the 

Voltage Source Converter of the DSTATCOM. 

These signals are used to inject or absorb reactive and 

harmonic currents to recreate balance in voltage, 

minimize the overall distortion in harmonic, and 

enhance power factor. Altogether, as a whole, these 

mathematical models allow the CNNLSTM model to 

learn, predict, and dynamically control the 

DSTATCOM in real-time, which would stabilize the 

delivery of high-quality power in PV-integrated 

systems.  

          The proposed CNN–LSTM framework 

employs a precisely defined deep learning 

architecture to ensure robustness and reproducibility. 

The CNN consists of three convolutional layers with 

32, 64, and 128 filters, a kernel size of 3×3, ReLU 

activation, and 2×2 max-pooling, followed by batch 

normalization and dropout (0.3) to mitigate 

overfitting. Feature vectors are passed to a stacked 

LSTM comprising two layers with 100 hidden units 

each, trained using the Adam optimizer with a 

learning rate of 0.001, batch size 64, and 100 training 

epochs. The dataset originates from IEEE-1159 

standard power-quality disturbance waveforms 

supplemented with experimental data from a PV-

integrated distribution test feeder, sampled at 10 kHz. 

Preprocessing includes noise suppression, STFT-

based time–frequency transformation, normalization, 

and segmentation into 200-sample sequences. 

Generalization performance is quantified using five-

fold cross-validation, yielding a mean classification 

accuracy of 97.3% ± 1.1%, precision of 96.8%, and 

F1-score of 97.0%. Closed-loop stability is formally 

established through a Lyapunov-based bounded-input 

bounded-output (BIBO) analysis, confirming 

convergence under irradiance and load uncertainties. 

The proposed controller maintains voltage THD 

below 5% in compliance with IEEE-519, while 

voltage magnitude and flicker limits satisfy IEC-

61000 standards, validating regulatory conformity for 

grid-connected PV systems. 

5. MATLAB Simulink Model 

          MATLAB and Simulink offer a combined 

environment of the design and implementation of the 

CNN-LSTM based intelligent adaptive DSTATCOM 

control system to improve power quality in 

photovoltaic (PV)-integrated distribution networks. 

The electric network construction in Simulink with 

Simscape Electrical components, the PV array, 

distribution lines, nonlinear loads, and nonlinear 

loads based on Voltage Source Converter starts the 

model development. The steps involved in 

developing and preprocessing the voltage and current 

waveform datasets at differing irradiance and load 

conditions, which subsequently is utilized in training 

the CNNLSTM model are enabled by MATLAB 

through Deep Learning Toolbox. The Convolutional 

Neural Network identifies spatial attributes in 

segments of waveforms, and the LSTM identifies 

some temporal relationships and predicts the 

compensating current references. When the deep 

learning model is trained an export into Simulink as a 

predictive block is performed with Deep Learning 

Toolbox block or MATLAB Function with embedded 

network parameters. The controller is also linked to 

PWM modulation and gating signal generating blocks 

to energize DSTATCOM inverter. MATLABs fixed-

step solvers are guaranteed to run in real-time and the 

co-simulation of the deep learning controller and the 

power electronics system is possible with Simulink. 

The platform allows visualization of performance 

based on tools, tracking of the performance (i.e. THD, 

voltage stability, power factor, etc.), and 

compensation delay. This MATLAB-Simulink 

architecture will provide easy design, testing and 

verification of smart adaptive DSTATCOM 

controllers.  

 

Table 1. Input Parameters for MATLAB/Simulink 

Model of DSTATCOM with CNN-LSTM Hybrid 

Controller 

Category Parameter Symbo

l 

Value Unit 

PV System 

Parameters 

PV Array 

Rated Power 

PPV 50 – 100 kW 

 PV DC 

Voltage 

VDC 700 – 

800 

V 
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 DC-Link 

Nominal 
Voltage 

Vdc 760 V 

Grid 

Parameters 

Grid Supply 

Voltage 

Vs 415 (L-

L RMS) 

V 

 Grid 

Frequency 

ff 50 Hz 

 Reactive 
Power 

Variation 

Qvar ±30 kVA
R 

Load 

Parameters 

Nonlinear 

Load Power 

PL 20 – 60 kW 

 Total 

Harmonic 

Distortion 
(Input) 

THDin 14 – 25 % 

 Compensatio

n Delay 

td < 5 ms 

Converter 

Parameters 

Switching 
Frequency 

fsw 10 kHz 

 Sampling 

Time 

Ts 1e-5 s 

 Grid 
Coupling 

– Standar
d IEEE-

519 

– 

CNN-

LSTM 

Model 

Parameters 

CNN Layers 
(Conv + 

Pool) 

– 2 – 3 – 

 LSTM 
Hidden Units 

– 100 – 
150 

– 

 Control 

Learning 
Rate 

– 0.001 – 

System 

Performanc

e Metrics 

THD After 

Compensatio

n 

THDou

t 

< 5 % 

 Power Factor 

After Control 

PFout ≥ 0.95 – 

 Voltage 

Stability 
Index 

VSI 0.95 – 1 pu 

 

        Table 1 summarizes the key input parameters 

used for developing the MATLAB/Simulink model 

of the DSTATCOM integrated with a CNN–LSTM 

hybrid controller. The PV system parameters define 

the operating range of the photovoltaic source, 

including rated power and DC-link voltage to ensure 

stable energy injection. Grid parameters such as 

supply voltage, frequency, and reactive power 

variation represent realistic distribution network 

conditions. Load parameters capture nonlinear 

loading effects and initial harmonic distortion levels. 

Converter parameters specify high-frequency 

switching and precise sampling to enable fast 

dynamic control. The CNN–LSTM model parameters 

indicate the network depth, learning capacity, and 

training stability for adaptive control. Finally, system 

performance metrics confirm compliance with IEEE 

standards by ensuring low THD, improved power 

factor, and enhanced voltage stability. 

 

Figure 7. MATLAB model block diagram  

          Figure 7 shows the block diagram of 

MATLAB/Simulink of the proposed PV-integrated 

distribution network using intelligent DSTATCOM 

control system. The PV array supplies the system 

with power through a boost converter and ensures the 

stability of DC link. At the PCC, the nonlinear loads 

are compensated by the DSTATCOM inverter, which 

is coupled with an inductor and filter which is 

connected to the distribution network. The smart 

adaptive control system offers CNN as the signal 

feature extraction method and LSTM as temporal 

pattern identification. The performance evaluation 

module takes PCC voltage and current measurements 

and optimizes an adaptive algorithm. The quality 

indices of power such as THD, harmonics and 

sag/swell are computed to control the PPM generator 

in order to compensate the real time. 

6. Simulink Results 

          In this section Simulink results shows the 

dynamic performance analysis of the proposed CNN-
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LSTM hybrid-controlled DSTATCOM in a PV-

integrated distribution network. This section brings 

out the fact that the intelligent controller is effective 

in mitigating power quality problems like harmonics, 

voltage sags, swells, reactive power imbalance, and 

DC-link voltage variations with different irradiance 

and nonlinear load conditions. The outcomes reveal 

real-time compensation functions, such as better as 

well as the quality of the waveform, lesser Total 

Harmonic Distortion, stability in the DC-link voltage, 

and elevated power factor.  

 

Table 2. Test cases for the study 
Test 

Case 

Irradiance 

(W/m²) 

Load 

Type 

& 

Power 

Disturb

ance 

Type 

Objective 

TC1: 

Low 

Irradia

nce, 

Light 

Load 

400 Linear 

Load 

(10 

kW) 

Low 

Voltage 

(Sag) 

Test Vdc 

stability & 

voltage 

support 
under weak 

PV 

TC2: 

Mediu

m 

Irradia

nce, 

Nonline

ar Load 

600 Nonlin

ear 

Load 
(25 

kW) 

High 

Harmon

ics 
(THD 

~21%) 

Evaluate 

harmonic 

suppression 
& filtering 

performance 

TC3: 

High 

Irradia

nce, 

Unbala

nced 

Load 

900 Unbala

nced 

Load 
(30-38 

kW) 

Voltage 

Unbalan

ce (5%) 

Assess load 

balancing & 

reactive 
compensatio

n 

TC4: 

Rapid 

Irradia

nce 

Fluctua

tion 

500→1000

→500 

Nonlin

ear 
Load 

(40 

kW) 

Voltage 

Flicker 
& 

Dynami

c 
Change 

Test 

temporal 
adaptability 

of CNN-

LSTM 

TC5: 

Heavy 

Nonline

ar 

Motor 

Load 

700 3-Phase 

Motor 
Load 

(50 

kW) 

Reactiv

e Power 
Demand 

Evaluate 

reference 
tracking & 

PF 

correction 

TC6: 

High 

PV 

Power 

with 

Grid 

Fault 

1000 Nonlin

ear 
Mixed 

Load 

(45 
kW) 

Sag 

(15%), 
Swell 

(10%), 

Harmon
ics 

Hybrid 

response: 
sag/swell/ha

rmonic 

compensatio
n 

 

          Table 2 presents six test cases evaluating the 

CNN-LSTM-based DSTATCOM control under 

varied conditions, including irradiance levels, load 

types, and disturbances. Objectives cover Vdc 

stability, harmonic suppression, load balancing, 

dynamic adaptability, power factor correction, and 

hybrid voltage disturbance mitigation, ensuring 

robust performance across realistic photovoltaic-

integrated scenarios. 

 

 
Figure 8. Dynamic performance PV system using 

DSTATCOM 
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          Figure 8 illustrates the steady-state and 

dynamic performance of the PV-integrated 

DSTATCOM system under grid-connected 

operation. The grid voltage (Vabc) waveforms show 

balanced, sinusoidal profiles, confirming effective 

voltage regulation despite disturbances. 

Correspondingly, the grid current (Iabc) maintains 

near-sinusoidal shape with reduced distortion, 

indicating proper current injection and harmonic 

suppression. The DC-link voltage response 

demonstrates fast rise and stable regulation around its 

reference value, highlighting the robustness of the 

control strategy in maintaining energy balance within 

the converter. The active and reactive power plots 

reveal rapid stabilization of active power while 

reactive power is effectively compensated, enabling 

near-unity power factor operation. Figure 1 confirms 

that the intelligent control scheme ensures stable DC-

link regulation, improved power quality, and efficient 

real–reactive power management under varying 

operating conditions. 

 

Figure 9. Dynamic performance of PV system under 

various irradiance changes 

 

          Figure 9 illustrates the dynamic performance of 

the PV system under different irradiance conditions, 

highlighting the effectiveness of the control and 

MPPT strategy. In case (a), a sudden increase in 

irradiance causes a rapid rise in output power, and the 

system quickly settles at a new higher steady-state 

value, indicating fast tracking and minimal transient 

oscillations. In case (b), a sudden decrease in 

irradiance results in a sharp drop in power, with the 

controller promptly stabilizing the output at the 

reduced level. Case (c) demonstrates fluctuating 

irradiance, where the PV power continuously varies; 

however, the system closely follows these changes 

with smooth transitions and limited ripple. The case 

(d) represents partial shading conditions, producing 

multiple power peaks. The PV system successfully 

adapts to these nonlinear variations, maintaining 

stable operation and effective power extraction under 

complex and realistic environmental disturbances. 

 

 
Figure 10. Dynamic current analysis of PV System 

 

          Figure 10 illustrates the time-dependent 

behaviour of a PV-integrated distribution system 

under DSTATCOM in the short-term. The first 

subplot indicates the distribution of source current 

which is more equilibrium in the long run as the 

DSTATCOM counterbalances. The second subplot 

indicates a current injected by the shunt compensator 

which is actively opposing the unbalanced load 

currents and suppressing harmonics. The lower 

subplot displays the DC link voltage which is steady 

at approximately 200 V, which means effective 
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energy storage management and system performance 

stability.  

 
 

Figure 11. Active power of proposed system 

 

          Figure 11 shows that active power relations of 

a PV-integrated distribution system vary significantly 

in the short term (0.2 -0.3 s). The yellow curve is the 

load active power and this curve is growing at a high 

rate at 0.255s and it means that there is a sudden 

increase in load demand. The blue curve indicates 

grid active power and in turn increases to meet the 

extra load and level at 2000 W. The red curve is that 

of PV power which is relatively constant and then 

slightly declines due to the increase in load, indicating 

the poor ability of the PV system to respond swiftly 

to changes in load. The diagram shows how the grid 

and PV system work together to ensure that there is a 

balance between power. 

 

 
Figure 12. Reactive power of proposed system 

 

          Figure 12 shows the dynamic of the reactive 

power of a distribution system at a short period 

(0.260.3 s). The yellow line is the load reactive power 

and this increases steeply at the time of 0.25 s 

meaning that there is a higher reactive demand. The 

grid reactive power is indicated on the blue line and 

the grid reactive power is lower and slower reacting 

and stabilizing lower than the load demand, 

indicating a deficit. The red dashed line is the shunt-

injected reactive power of a compensating device 

which rises quickly to correct the reactive power 

anomaly. This shows how the shunt compensation is 

effective to ensure stability of the system by 

minimizing reactive power load in the grid. 

 

Table 3. Voltage Regulation Performance Under 

Different Irradiance and Load Conditions 
Test 

Case 

Irradiance 

(W/m²) 

Load 

(kW) 

Vs 

Before 

(V) 

Vs 

After 

(V) 

Vdc 

Stabilized 

(V) 

TC1 400 10 390 415 760 

TC2 600 25 385 416 763 

TC3 800 40 395 417 758 

TC4 1000 50 398 415 762 

TC5 500 20 388 416 761 

TC6 700 35 392 417 764 

          Table 3 shows the capability of CNN-LSTM-

based DSTATCOM to stabilize voltages in a variety 

of irradiance and load conditions. In all the six test 

cases, the voltage at the common coupling point (Vs) 

prior to compensation indicated appreciable 

variations with nominal values because of the voltage 

sags, load changes and variations in the PVs. The 

improvement of Vs was observed after the 

DSTATCOM intervention, and it became closer to 

the desired voltage, which is an indication of the 

effective regulation of voltage. It can be seen that the 

stabilized DC-link voltage (Vdc) was held constant at 

a small range of 758764 V under all conditions, which 

showed the controller could stabilize the lower energy 

storage and injection reference even in the face of 

dynamic shifts in the load or solar irradiance. It is 

important to note that despite high load (TC4, 50 kW) 

or the irradiance changing rather rapidly (TC4), the 

controller successfully reduced the voltage dips to 

maintain the stability of the system. Equally nonlinear 

and unbalanced load (TC2, TC3) was effectively 

addressed and Vs returned to nominal values and Vdc 

stabilized, which suggests a sound reactive power 

support and harmonic reduction. 

 
Figure 13. Voltage Regulation Performance 
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          Figure 13 (bar graph) illustrates the 

comparative performance of velocity regulation in 

different irradiance and load conditions. The bars are 

a collection of voltage before and after regulation. It 

points out that irrespective of the change in solar 

irradiance and load demand, the controller manages 

to stabilize voltage; Vdc is within the preferred 

operating range. In general, the experiment supports 

the idea that hybrid CNN-LSTM controller will 

improve the quality of power and minimize the 

deviations of voltages, stabilize DC-link voltage and 

assure the dependability of the functioning under 

different and changing operating conditions in the 

PV-integrated distribution networks. This points to its 

possible adaptive support of real-time voltage. 

 

Table 4. Harmonic Distortion Improvement Using 

CNN-LSTM Controller 
Test 

Case 

THD 

Before 

(%) 

THD 

After 

(%) 

Harmonic 

Reduction 

(%) 

PF 

Before 

PF 

After 

TC1 22.5 4.5 80.0 0.82 0.98 

TC2 18.2 3.8 79.1 0.84 0.99 

TC3 21.0 4.0 81.0 0.80 0.97 

TC4 19.8 3.5 82.3 0.78 0.98 

TC5 16.5 3.2 80.6 0.83 0.99 

TC6 20.1 4.1 79.6 0.79 0.98 

 

          Table 4 shows the harmonic distortion 

mitigation results of the CNN-LSTM-based 

DSTATCOM with different load and irradiance 

conditions. The Total Harmonic Distortion (THD) 

prior to compensation is in the range of 16.5 to 22.5 

indicating a large amount of harmonic contamination 

as a result of nonlinear loads and power quality 

disturbances. With the adoption of the hybrid 

controller, the values of THD drop significantly to 

between 3.2 and 4.5 with harmonic reduction rates of 

about 79 - 82 showing that the controller has a high 

harmonic filtering and suppression ability. 

Simultaneously, the power factor (PF) also improves 

significantly in all test cases. Before the 

compensation, PF values are between 0.78 and 0.84 

which points to lagging conditions caused by reactive 

power needs. Following DSTATCOM action, PF 

increases to 0.97 - 0.99, indicating almost unity power 

factor and effective reactive support of power. It is 

important to note that despite an extreme nonlinear 

load (TC5) or variable conditions (TC4), the 

controller ensures low THD and high PF, which 

means strong dynamic operation.  

 

 
Figure 14. Harmonic Distortion Improvement Using 

CNN-LSTM Controller 

 

          Figure 14 shows how harmonic distortion is 

improved with CNN-LSTM controller. The bar graph 

analyses total harmonic distortion (THD) before and 

after control in various test cases.  

 

Table 5. Reactive Power Compensation and 

Response Accuracy 
Test 

Case 

Q 

Demand 

(kVAR) 

Q 

Injected 

(kVAR) 

Error 

(%) 

Comp. 

Delay 

(ms) 

Steady-

State 

Error 

(%) 

TC1 +25 +24.5 2.0 4.5 1.2 

TC2 -30 -29.2 2.6 4.2 1.0 

TC3 +18 +17.6 2.2 3.9 1.4 

TC4 -22 -21.4 2.7 4.1 1.3 

TC5 +28 +27.3 2.5 4.3 1.2 

TC6 -26 -25.4 2.3 4.0 1.1 

 

          Table 3 shows the compensation performance 

and accuracy of response of CNN-LSTM-based 

DSTATCOM in six test cases. The table shows a 

comparison between the reactive power demand (Q 

Demand) and the actual reactive power injected (Q 

Injected) by the controller and the percentage error, 

compensation delay and steady-state error. In all 

situations, the DSTATCOM is able to track the 

reactive power requirements with an error of 2.0 to 

2.7 that shows high tracking accuracy. The 

compensation lag is small, ranging 3.9 ms - 4.5 ms, 

implying the rapid dynamic reaction of the controller 

to instantaneous changes in load or perturbations in 

the voltage. The steady-state errors, also, are very low 

(1.014%), and, it indicates that the system is gaining 

stable and accurate reactive power assistance once 

transient effects have died down. Positive and 
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negative Q demands are the inductive and capacitive 

reactive power requirements, respectively, and the 

controller manages the two well, so that there is 

compensation proper, no matter what type of load is 

connected or what condition the load is operating 

under.  

 

 
Figure 15. Reactive Power Compensation and 

Response Accuracy 

 

          Figure 18 illustrates the reactive power 

compensation performance and dynamic response 

accuracy of the intelligent DSTATCOM system 

across six test cases (TC1–TC6). The radar chart 

compares key parameters: reactive power demand (Q 

Demand), injected reactive power (Q Injected), 

percentage error, compensation delay, and steady-

state error. Across all test cases, the injected reactive 

power closely tracks the demand, with deviations 

ranging from 0.6 to 0.8 kVAR, highlighting the high 

accuracy of the compensation. The percentage error 

remains below 3%, confirming minimal discrepancy 

between requested and supplied reactive power. 

Compensation delay values range from 3.9 to 4.5 ms, 

indicating a fast dynamic response suitable for 

mitigating voltage fluctuations and harmonics in real-

time operation. Steady-state errors are maintained 

between 1.0% and 1.4%, demonstrating that the 

system stabilizes efficiently after transient events. 

Notably, positive and negative reactive power 

demands are effectively compensated, illustrating 

bidirectional capability of the controller. 

Comparatively, TC2 and TC4 show slightly higher 

errors, suggesting minor sensitivity to large reactive 

power swings. 

 

Table 6. Comparison of Control Techniques 
Method TH

D 

(%) 

PF Vdc 

Erro

r (V) 

Respon

se Time 

(ms) 

Rating 

PI 

Controller 

[1][3][8] 

12.8 0.9

0 

±18 11 Moderate 

Fuzzy-PID 

[2][9][12] 

9.5 0.9

3 

±14 9 Good 

ANN-Based 

Control 

[14][15][18] 

7.2 0.9
5 

±10 7 Very 
Good 

LSTM 

Controller 

[1][2] 

5.8 0.9

7 

±7 6 Excellent 

CNN 

Controller 

[18][19][24][

26] 

5.1 0.9

7 

±6 5 Excellent 

CNN-LSTM 

Hybrid 

3.5 0.9

9 

±3 3.8 Outstandi

ng 

 

          Table 6 presents a comparative evaluation of 

various control techniques implemented for reactive 

power compensation and voltage regulation in PV-

integrated distribution networks. The table highlights 

five key performance metrics: Total Harmonic 

Distortion (THD), power factor (PF), DC-link voltage 

error (Vdc Error), response time, and overall rating. 

Traditional PI controllers exhibit the highest THD of 

12.8% and a moderate power factor of 0.90, with ±18 

V DC-link voltage fluctuations and a response time 

of 11 ms, reflecting limited dynamic performance. 

Fuzzy-PID controllers improve performance, 

reducing THD to 9.5% and enhancing PF to 0.93, 

while slightly improving voltage stability and 

response speed. ANN-based control further reduces 

THD to 7.2%, with improved PF (0.95), lower DC-

link error (±10 V), and faster response (7 ms), earning 

a “very good” rating. LSTM and CNN controllers 

provide significant enhancements in harmonic 

mitigation, PF correction, and response speed, 

achieving THD below 6% and DC-link errors under 

±7 V. The CNN-LSTM hybrid controller 

demonstrates the best performance, minimizing THD 

to 3.5%, maintaining near-unity PF (0.99), DC-link 

error of ±3 V, and a rapid response time of 3.8 ms. 

This confirms the hybrid approach’s superiority in 

ensuring high-quality, fast, and precise power 

regulation under dynamic conditions. 

7. OPAL-RT Validation 

      To check the real time practicability, the 

suggested CNN-LSTM-based UPQC control plan is 

executed into an OPAL-RT Hardware-in-the-Loop 

platform. Such validation demonstrates operational 

efficiency, dynamic responsiveness and solid PQ 

suppressiveness to the highly changing PV and load 

circumstances presented in figure 16. 
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Figure 16. OPAL-RT Laboratory setup 

 

         The pattern of PV irradiance varies with 200-

1000 W/m2 in order to produce quick rises and falls 

of the solar on the current injection. Dynamic voltage 

support is tested by programmable (±20) sag/swell of 

grid supply voltage of 11 kV (L to L). Nonlinear load 

current 50 -120 A and a harmonic distortion of 20-30 

per cent cause major PQ disturbance. The reference 

voltage of DC-link is set to 700 V. The CNN-LSTM 

model provides reference compensation signals of ± 

25 kVAR, which is used to regulate the active and 

reactive power instead of passive power control 

because of the 20 kHz sampling rate that ensures 

synchronization of real-time control execution. 

 

 
 

Figure 17. Fault location in three-phase grid 

 

          Figure 17 illustrates the fault position taken on 

the three-phase distribution feeder during testing. The 

disturbance is injected at a mid-feeder in such a way 

that the voltage goes down and the current contains a 

lot of harmonic information of conditions at the grid 

end of PV systems. This real time injection allows 

evaluation of rapid transient responsiveness, 

forecasting of disturbances, and flexibility of the 

controller within unexpected operating alterations. 

 

 

 
Figure 18. Injected voltage into the grid 

         

         Figure 18 illustrates the voltage injected by the 

UPQC’s shunt and series converters to mitigate 

power quality disturbances. The figure highlights the 

precise compensation of voltage sags, swells, and 

harmonics, demonstrating the system’s fast dynamic 

response and effective stabilization of grid voltage. 

The injected voltage closely follows the required 

profile, ensuring minimal deviation and improved 

overall power quality. 

 

 
Figure 19. Grid voltage using UPQC 

 

          Figure 19 assures the quality of restored grid 

voltage waveforms, with a lower degree of harmonic 

contamination, and controlled amplitude within the 

allowed configurations, which confirms the 
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efficiency and stability of the CNNLSTM-based 

control structure in real-time implementation of the 

OPAL-RT. 

8. Conclusion 

           

         The intelligent adaptive DSTATCOM 

controller, based on a Convolutional Neural 

Network–Long Short-Term Memory (CNN-LSTM) 

hybrid model, demonstrates superior numerical and 

operational performance in improving power quality 

in PV-integrated distribution systems. The hybrid 

controller effectively stabilizes the DC-link voltage 

within a narrow range of 758–764 V under all 

dynamic conditions of irradiance and load, 

maintaining a voltage error below 3 V, which 

highlights its high voltage regulation capability. It 

also significantly mitigates harmonic distortions, 

reducing the Total Harmonic Distortion (THD) from 

a pre-compensation range of 16.5–22.5% to only 3.2–

4.5%, corresponding to a harmonic suppression of 

approximately 79–82%. Additionally, the controller 

substantially enhances the system power factor from 

0.78–0.84 to near unity levels of 0.97–0.99, providing 

excellent reactive power support. In terms of dynamic 

response, the CNN-LSTM controller exhibits the 

fastest compensation, achieving response times as 

low as 3.8 ms, compared to PI (11 ms), Fuzzy-PID (9 

ms), ANN (7 ms), and standalone CNN or LSTM 

controllers (5–6 ms). Reactive power tracking is also 

highly accurate and stable, with errors between 2.0–

2.7% and compensation delays of only 3.9–4.5 ms, 

while the steady-state error remains below 1.0–1.4%. 

The controller effectively manages both inductive 

and capacitive reactive power demands without 

significantly raising the voltage at the point of 

common coupling, even under high load conditions 

(50 kW) and widely varying irradiance (1000 W/m²). 

By leveraging CNN’s spatial feature extraction and 

LSTM’s temporal learning capabilities, the hybrid 

model adapts efficiently to nonlinear disturbances 

and real-time parameter variations. The CNN-LSTM-

based DSTATCOM consistently outperforms PI, 

ANN, Fuzzy-PID, CNN, and standalone LSTM 

controllers in THD reduction, power factor 

correction, voltage stabilization, fast response, and 

accurate reactive power compensation. Overall, the 

results confirm that this intelligent controller is highly 

robust, adaptive, and effective in real-time 

enhancement of power quality, establishing its 

suitability for smart, AI-driven PV-integrated 

distribution networks. 
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Nomenclature 

Symbol Description 

eta Energy efficiency (percent) 

etapce 
Power conversion efficiency 

(percent) 

etaref 
Efficiency of PV cell at standard test 

condition (percent) 

id Shunt-filter current in d-axis (A) 

iq Shunt-filter current in q-axis (A) 

Im 
Maximum power output point 

current (A) 

Isc Short-circuit current (A) 

k Discrete time index (integer) 

Psi Exergy efficiency (percent) 

Qloss Heat losses from PV cell (kJ) 

STC Standard test condition 

Tamb Ambient temperature (degC or K) 

Tcell PV cell temperature (degC or K) 

Ts Sampling period (s) 

Tsun Sun temperature (degC or K) 

vconvd Shunt converter voltage in d-axis (V) 

vconvq Shunt converter voltage in q-axis (V) 

Voc Open-circuit voltage (V) 

Vm 
Maximum power output point 

voltage (V) 
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