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This paper presents a Convolutional Neural Network—Long Short-Term Memory
(CNN-LSTM) based intelligent adaptive control strategy for a DSTATCOM to
enhance power quality in photovoltaic (PV)-integrated distribution networks. The
proposed controller exploits CNN-based spatial feature extraction of voltage—current
waveforms and LSTM-based temporal learning to address nonlinear and time-varying
disturbances. Simulation and real-time hardware-in-the-loop (HIL) validation using an
OPAL-RT platform confirm superior performance under dynamic irradiance (200-
1000 W/m2) and load variations (up to 50 kW). The DC-link voltage is tightly regulated
within 758-764 V, with a maximum deviation below 3 V. Total Harmonic Distortion
(THD) is reduced from 16.5-22.5% to 3.2-4.5%, achieving 79-82% harmonic
suppression and compliance with IEEE-519 limits. The power factor improves from
0.78-0.84 to 0.97-0.99, approaching unity. The proposed controller exhibits a fast
dynamic response of 3.8 ms, outperforming PI, Fuzzy-PID, ANN, CNN, and LSTM
controllers. Reactive power tracking errors remain below 2.7%, demonstrating high
robustness and real-time adaptability for smart PV-integrated grids.

1. Introduction

modern  networked distribution systems has
significantly transformed the power sector. This

The growing adoption of renewable energy transition has delivered substantial environmental
sources, particularly photovoltaic (PV) systems, in benefits by reducing carbon emissions and fossil fuel
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dependence, while also offering long-term economic
advantages through lower operating costs and
decentralized generation. Despite these advantages,
the large-scale integration of PV systems introduces
several technical challenges related to power quality.
Common issues include voltage instability, reactive
power imbalance, harmonic distortion, voltage
flicker, poor power factor, and unbalanced loading
conditions. These problems adversely affect system
reliability and operational efficiency, and they hinder
the seamless integration of renewable energy into
existing grid infrastructures.

The challenges are more pronounced in weak
radial distribution networks, which are highly
sensitive to the stochastic and intermittent nature of
solar energy generation. Fluctuations in solar
irradiance and rapidly changing load demands can
cause severe voltage and power quality disturbances,
making conventional control approaches inadequate.
To mitigate these issues, various power electronic
compensating devices have been deployed. These
include series compensators such as the Static
Synchronous Series Compensator (SSSC) and
Thyristor-Controlled Series Capacitor (TCSC), shunt
compensators such as the Static VAR Compensator
(SVC) and Distribution Static Synchronous
Compensator (DSTATCOM), as well as hybrid
devices like the Unified Power Quality Conditioner
(UPQC) and Unified Power Flow Controller (UPFC).
Among these solutions, the shunt-connected
DSTATCOM has emerged as a particularly attractive
option due to its superior capability to provide fast
and flexible reactive power support. It effectively
mitigates voltage fluctuations, reduces harmonic
distortion, improves power factor, and ensures load
balancing.  However, the performance of
DSTATCOM largely depends on the effectiveness of
its control strategy. Traditional controllers such as
Proportional-Integral ~ (PI), fuzzy logic, and
conventional Artificial Neural Networks (ANNS)
have been widely used, but they often struggle in
highly nonlinear, dynamic environments due to
limited adaptability, poor prediction capability, and
slower response to rapid changes.

To overcome these limitations, the proposed
study introduces an intelligent adaptive control
scheme for DSTATCOM based on a hybrid
Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM) architecture in PV-integrated
distribution networks. CNNs are well suited for
extracting spatial features from real-time voltage,
current, and irradiance signals, while LSTM networks
excel at capturing temporal dependencies and
predicting future system behavior under rapidly
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varying solar and load conditions. The integration of
these deep learning techniques enables accurate
anticipation of compensation requirements and
significantly enhances the dynamic response of the
DSTATCOM.

The proposed CNN-LSTM-based control
approach  offers faster convergence, higher
robustness, reduced Total Harmonic Distortion
(THD), improved power factor correction, and stable
DC-link voltage regulation compared to conventional
methods. Moreover, it ensures compliance with
IEEE-519 and IEC-61000 power quality standards.
Overall, this intelligent adaptive DSTATCOM
control strategy represents an important step toward
Al-driven power quality management, supporting the
development of stable, efficient, and resilient future
smart grids with high renewable energy penetration.
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Figure 1. Block diagram for proposed research

l DSTATCOM

Figure 1 illustrates the operational sequence of
an intelligent adaptive DSTATCOM control system
in a PV-integrated distribution network. In this
configuration, the photovoltaic array and battery
energy storage system supply DC power, which is
converted to AC through a DC-AC converter and
delivered to the Point of Common Coupling (PCC).
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Voltage and current sensors installed at the PCC
continuously measure system parameters. These
signals are filtered and processed using a CNN-
LSTM framework to extract meaningful spatial and
temporal features. The control unit identifies the
operating mode of the system either grid-connected
or islanded and accordingly activates intelligent
controllers such as proportional—integral (PI) or
sliding-mode controllers to generate pulse-width
modulation (PWM) signals for the DSTATCOM. The
DSTATCOM performs reactive power compensation
and harmonic mitigation, thereby improving voltage
stability and power factor. Continuous monitoring
and adaptive control of power quality enhance overall
grid performance, operational reliability, and
resilience.

With the increasing penetration of photovoltaic
systems in modern distribution networks, challenges
related to accurate forecasting, fault detection, and
power quality regulation have become more critical.
These challenges necessitate intelligent hybrid
approaches that combine deep learning techniques
with Flexible AC Transmission System (FACTS)-—
based controllers. To address temporal-spatial
dependencies and forecasting inaccuracies caused by
nonlinear meteorological variations, Wu et al. (2024)
proposed a  CNN-LSTM-attention model
incorporating conventional solar term divisions,
significantly improving PV power forecasting
accuracy [1]. Similarly, Hu et al. (2024) enhanced
forecasting performance by integrating neighboring
station data through a CNN-LSTM attention
architecture, demonstrating strong generalization
under fluctuating irradiance conditions [2]. The
effectiveness of two-stream CNN-LSTM maodels for
extracting solar data trends was further validated by
Alharkan et al. (2023) [5,9]. Ren et al. (2024)
incorporated meteorological variables into CNN-
based structures to improve ultra-short-term
forecasting accuracy [10], while Bui Duy et al. (2024)
optimized LSTM input parameters to enhance
prediction reliability [12].

In the area of PV fault detection, Ledmaoui et
al. (2024) employed CNN-based classification for
real-time fault identification in PV panels, achieving
high detection accuracy using PyQt5-based
applications [3]. Regarding FACTS-assisted power
quality enhancement, Chen et al. (2022) developed a
smart-controlled DSTATCOM capable of effective
voltage regulation and harmonic reduction in
distribution networks [4]. Vali et al. (2025) further
demonstrated that deep-learning-based controllers
applied to parallel DSTATCOM  systems
significantly improved total harmonic distortion
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(THD), power factor correction,
compensation capability [6].
Comparative studies by Garcia et al. (2020) revealed
that CNN-LSTM hybrid models outperform
standalone CNN or LSTM approaches in classifying
power quality disturbances, particularly under non-
stationary conditions [11]. These findings were
reinforced by Bai et al. (2025), who integrated Fast S-
transform techniques with CNN-LSTM models to
further enhance disturbance classification accuracy
[17]. Comprehensive reviews, such as that by Kiasari
and Aly (2025), highlight the growing role of Al-
based power quality control using FACTS devices,
supporting the adoption of hybrid deep learning and
adaptive controllers in smart grids [8].

Despite these advances, a notable research gap
remains in real-time adaptive DSTATCOM control
under rapidly varying PV conditions using hybrid
CNN-LSTM networks [21]. To address this gap, the
proposed study introduces a CNN-LSTM-based
intelligent adaptive DSTATCOM control strategy
capable of extracting spatial-temporal features,
predicting  compensation  requirements, and
dynamically  regulating  voltage, suppressing
harmonics, and balancing reactive power in PV-
integrated distribution networks. By leveraging deep
learning, the proposed scheme enhances controller
adaptability, reduces THD, improves power factor,
and ensures superior operational stability, making it a
promising solution for future Al-enabled smart grids
[22,23].

and dynamic

2. Photovoltaic System

Photovoltaic (PV) system modeling plays a
crucial role in the accurate analysis, design, and
integration of solar energy into existing distribution
networks, especially when PV systems are
coordinated with intelligent power conditioning
devices such as Distribution Static Synchronous
Compensators (DSTATCOM) for power quality
enhancement. A typical PV system consists of a solar
array, a DC-DC converter equipped with Maximum
Power Point Tracking (MPPT), a DC-link capacitor,
and a DC-AC inverter. Together, these components
convert variable solar irradiance into regulated, grid-
compatible electrical power [28].

Dynamic modeling of PV systems involves
representing the electrical behavior of PV cells under
varying irradiance and temperature conditions. This
includes the characterization of current—voltage (1-V)
and power—voltage (P-V) curves, as well as the
system response to transient operating conditions
such as sudden load variations or grid disturbances.
Due to the intermittent and stochastic nature of solar



Manjur Elahi et al./Journal of Solar Energy Research Volume 11 Number 1 Winter (2026) 2780-2801

energy, PV modeling must also account for
fluctuations in output power, voltage instability, and
the introduction of harmonics into the distribution
network. These effects can significantly degrade
power quality if not properly mitigated.
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Figure 2. Flowchart Block Diagram of Predictive
Control

Figure 2 illustrates the block diagram of the
predictive control strategy flowchart for a
DSTATCOM in a PV-integrated distribution system.
The solar array generates DC power, which is
regulated using a DC-DC converter with Maximum
Power Point Tracking (MPPT) and then converted
into AC power through a PWM-controlled DC-AC
inverter. The conditioned power is delivered to the
Point of Common Coupling (PCC), where it
interfaces with the distribution network and
connected loads. A power quality analysis module
continuously monitors voltage harmonics, sag/swell,
and frequency deviations using FFT-based detection
algorithms. Based on this assessment, mitigation
devices such as active filters, STATCOM, and DVR
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are dynamically activated to enhance power quality
and ensure real-time system stability [31].

To ensure stable and reliable grid interaction,
PV systems must be integrated with advanced control
strategies and power electronic compensators.
Devices such as DSTATCOM provide fast reactive
power support, harmonic mitigation, and voltage
regulation, thereby improving overall system stability
[29]. The incorporation of artificial intelligence—
based controllers  further enhance  system
performance by enabling adaptive decision-making
under dynamic operating conditions. In particular,
memory-driven machine learning models such as
CNN-LSTM architectures improve real-time fault
detection, adaptive signal filtering, and predictive
reactive power compensation. The PV system
modeling  enables  performance  optimization,
supports the development of robust control strategies,
and forms the foundation for intelligent adaptive
power quality enhancement in PV-integrated
distribution networks. Such modeling is essential for
achieving reliable, efficient, and resilient renewable
energy-based power systems [30].

The current of a solar cell (equation-1) can be
modeled as:

V + IRs
I = Iph —1Io [exp (%) - 1]
V + IRs
Rs

€y

Where:
I = PV cell output current (A)
Ipn = photocurrent proportional to irradiance
lo = diode saturation current
q = electron charge (1.6 x 10~ 1° C)
V = output voltage (V)
Rs and Rsh = series and shunt resistances
n = ideality factor
T = temperature (K)

The instantaneous power delivered by a PV cell
(equation-2) is:
2

P=VI

This forms the basis of P—V characteristics,
essential for MPPT and UPQC reference generation.
At the Maximum Power Point (MPP):

ap _ dwDn _ dr 3
av_— av av ) ( )_

This equation (equation-3) is used in Incremental
Conductance (IC) MPPT algorithms.
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Power Balance in Grid-Connected PV with
DSTATCOM:

Ppv = PLoad + Ploss + Priter (4)

where:

Pev = power generated by PV

PLoad = load demand

PLoss = System and conversion losses

Prier = power handled by DSTATCOM (for
harmonics)

Harmonic distortion in PV-inverter output (equation-
5) is quantified as:
(=5} 2

"2 2 100%

B
THD = ¥— (5)

where: V1 = RMS value of fundamental voltage
Vn = RMS value of nth harmonic
component

The generation of current in a photovoltaic
system depends on the response of the solar cell to
incident light, operating voltage, and internal
resistance. When sunlight strikes the cell, it generates
charge carriers that produce a flow of current, which
is affected by resistive losses and the intrinsic
properties of the semiconductor material [32]. The
electrical power output of a PV cell is defined as the
product of its voltage and current, forming the basis
of the power—voltage (P-V) characteristic curve. This
curve is essential for identifying the maximum power
point, at which small variations in voltage do not
significantly affect the output power [33]. In grid-
connected systems equipped with compensators, the
generated power must balance the consumed power,
including compensation losses. The voltage harmonic
distortions are assessed by analyzing unwanted
frequency components relative to the fundamental
supply frequency [34].

3. DSTATCOM Modeling for PV System

A Distribution Static Compensator
(DSTATCOM) is a shunt-connected power electronic
device used to regulate voltage, suppress harmonics,
and improve power factor in distribution networks,
especially those integrated with renewable energy
sources such as solar photovoltaic systems. Its basic
structure includes a voltage-source inverter, DC
energy storage unit, coupling transformer, harmonic
filters, sensing units, and control circuitry. The
inverter converts the DC-link voltage into a
controllable AC output with adjustable magnitude
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and phase, enabling dynamic injection or absorption
of reactive power. During voltage sag conditions, the
DSTATCOM supplies reactive power to support the
grid, while under overvoltage conditions it absorbs
reactive power to maintain system stability and
enhance overall power quality [35].

P Sensitive load

Distribution | )
Bus Coupling
r Y l Y ] transformer
C

VSC

DSTATCOM

DC energy
storage

Figure 3. Block diagram of DSTATCOM

Figure 3 depicts the simple plan of a
DSTATCOM coupled with an electrical network. It
is connected to the distribution bus by a coupling
transformer, which offers the electrical isolation and
allows the introduction of compensating currents.
The company of the DSTATCOM is a Voltage
Source Converter (VSC) that changes DC power into
controlled AC signals to control reactive power. The
VSC requires the DC voltage supplied by the DC
energy storage, usually a capacitor or battery.
DSTATCOM increases the stability of voltages and
the quality of power by injecting or absorbing
reactive power that provides reliable supply of power
to the sensitive load downstream.

DC-Link Voltage Dynamics of DSTATCOM:

C aVgc — Pinv—=Pload
dc -

dat Pgc

(6)

C,4 is the DC-link capacitor that stores energy, while
V4 is its voltage. P, is the active power injected by
inverter (from PV or grid), and Py, .4 is the consumed
load power.
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This relationship is used in voltage regulation, control
design, and DC-link stability analysis.

Instantaneous Active and Reactive Power (aff frame):

O .
S=P+jQ= E(Uala +17ﬁlﬁ)

3. .

+ ]E(Uﬁla - Ualﬁ) 7
Here, v, vg and i,, iz are voltage and current in the
stationary aff reference frame. The active power PPP
denotes real power transfer, while reactive power
QQQ indicates compensation requirement. This is
used in instantaneous power theory (p—q control) to
generate compensation current reference for
DSTATCOM.

1U
Ls 4

State-Space Model of DSTATCOM (dg Domain):
Iq
iq

3l
A

Iq
d , Rg
E[ iq l = | w3 0
1
l 0 0 - RchdCJ lcdc [ian

117
+ L la

The above equation (8) is used for stability, system
modeling, and control design.

Voltage Regulation Support by DSTATCOM:

XsystQcomp
v

AV = ©)

This equation (9) determines the voltage boost
achieved via VAR compensation.

LCL Filter Resonant Frequency for DSTATCOM
(equation-10):

1 Ly+L
fres = Py ’ﬁ (10)
where f,..; Resonant frequency of the LCL filter (Hz),

L, Inverter-side inductance (H) and L, Grid-side (or
line-side) inductance (H) and CgFilter capacitance
connected between phases and ground (F).

The supply voltage is represented as(equation-11):

v (t) =V sin(wt)

an
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Load voltage (equation-12) distorted due to
harmonics:

(12)

UL(t) = vs(t) — VUse (t)
where v, (t) = injected series compensating voltage.

Load current (equatin-13) consists of fundamental +
harmonic + reactive components:

i) = iLf(t) + a0+ iLq(t) (13)

The shunt active filter injects current ig, (t) so that:
iL(t) = is(t) - ise(t) (14)
For the shunt converter connected to PCC:

di (15)
d

h .
Lsh (t) —t + Rshlsh = Vinv,sh — vpcc

where: L, (t) and Ry, = filter inductor parameters,
Vinysn = INVerter output voltage, v,.. = point of
common coupling voltage.

For the series converter dynamics:

dise
dt

Lge ®) + Rgelse = V5 + (Uinv,se - (16)

vL)
where vy, <. IS the injected series inverter voltage.

The common DC-link capacitor voltage dynamics:

Ve 1

Cdc(t) ? - Vd (Psh + Pse - Ploss) (17)
c

where: P, = power handled by shunt converter, P,,=
power handled by series converter. P,,;c = internal
losses.

Using proposed controller, the common DC link
capacitor dynamics:

Vaelk + 1] = Vge[k] + —=

VacCaclkl (Psnlk] + Pe[k])
(18)

where P, [k] and P, [k] are instantaneous powers of
shunt and series converters. Using Instantaneous
Power Theory (p-q Theory):



Manjur Elahi et al./Journal of Solar Energy Research Volume 11 Number 1 Winter (2026) 2780-2801

Clarke Transformation (abc — a30):

L 1
v v | 2 2 |
a a
[Ug =T, |Vp| WithT, ﬁ _ﬁ (19)
v v, 2
1 1 1
3 3 3
Inverse Clarke Transformation (a0 — abc):
2
3 0 1
Va Va 1 1
=T i - — 1
Zb T; Zﬁ With T; I 3 5B |(20)
c 0
11|
ERNG
Park Transformation (ap — dq) — rotation by
electrical angle 6:
Va Va cosf sinfd 0
Vq| =T.(0) |Vp | withT.(6) |sinf —sind 0
Vo Vo 0 0 1
(21)

Inverse Park Transformation (dq0 — af0):
Va Va Va
[Vﬁl = T,(-0) [Vq] = T,(0)™* [Vq] (22)
Vo Vo Vo

Composite abc — dq0 (single-step):

Vg Vg Vg
Vg | =T,(0)T, Ubl =Ty (0) [Vb] (23)

Vo Ve Ve

Discrete-time Park rotation (useful in digital
controllers/PLL):

[vd [k]] _ [cos@ [k] sin@ [k] [va [k]] 24
velkl] — l—sinf[k cosO[k]llvglk] 24

dg frame derivative relation (useful for dynamic
control/observer design):

d vq U, c0s0 + Vgsind 0 —11[VYa
E[Vq] - [—ﬁasine + Oﬁsine] @ [1 0 ] [Uq]

(25)
where @ = 0" (electrical angular speed).

Instantaneous active/reactive power in of} frame (p—q
theory) used for reference calculation:
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P=Vaia+Vgig, q=Vgia— veig (26)
Reference current generation (dq control — aff —
abc) typical APF flow:

iy iy
l;:| = Tc_lTp(_G) i; (27)
Le ij

where i ,ig are set by controllers.

Practical discrete Clarke with zero-sequence removal
(samples per step k) implemented for smooth
operation of proposed controller using UPQC:

volk] = 5 (walK] + vylK] + v [k) (29)
valk] = (2141 = ol 29)
valkd] = = (wylK] ~ v [k]) (30)

V3
Overall Compensation Condition the DSTATCOM

ensures:

v, (t) =V, sin(wt) (sinusoidal load voltage) i, (t) =
I,sin(wt) (sinusoidal source current)

The Linear discrete-time update (explicit
coefficients) for the DSTATCOM design for the
proposed controller:

ig[k + 1] = (1 - Ti") ig[k] + Tywig[k] +
Ts Ts

;vconv,d [k] - ;vconv,ds [k] (31)

. . Tst .

iglle + 1] = ~Tyoi[k] + (1 - - )iglil +
T. T.

i vconv,q [k] - i vconv,sq [k] (32)

vialk + 1] = vyglk] + —f iseqlk] — —f iyalk] (33)
vyl +1] = vy [k] + ; iseq k] — j—;im [k] (34)

Vaelk + 1] = Vg [k] + —=

m (Psh[k] + Pse[k])
(35)

where first four equations are linear in the states and
inputs; the DC-link update is nonlinear because the
power terms divide by V;.[k].
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The above mathematical formulations describe
the modeling and control mechanism of a
DSTATCOM in a PV-integrated distribution system,
highlighting the interaction between network
voltages, currents, and the compensator for power
quality enhancement. Nonlinear loads introduce
harmonic distortion and reactive power components,
which adversely affect system voltage and current
waveforms. The DSTATCOM generates
compensating currents to suppress these harmonics
and to maintain sinusoidal source current and voltage
profiles. Through its series converter, the device
corrects voltage imbalances, sags, and swells, while
the shunt converter injects reactive and harmonic
compensating currents into the system. Both
converters are supported by a common DC-link
capacitor that stabilizes energy during dynamic
compensation processes. System voltages and
currents are transformed into rotating reference
frames to decouple active and reactive components,
enabling accurate and efficient control. Hence
instantaneous power theory is applied to compute real
and reactive power, facilitating real-time generation
of compensation signals for precise voltage and
current regulation [36].

4. Proposed Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM)
networks

The integration of a Convolutional Neural
Network—Long Short-Term Memory (CNN-LSTM)
hybrid framework offers a robust, data-driven, and
adaptive approach for power quality (PQ)
enhancement in PV-integrated distribution systems.
In this study, the CNN is trained using time—
frequency representations of voltage and current
signals obtained through Short-Time Fourier
Transform (STFT)-based spectrograms. The signals
are sampled at 10 kHz with a window length of 1,024
samples and 50% overlap to ensure accurate
frequency-time resolution. The training dataset
comprises 12,000 labeled PQ events, including
harmonic distortions with total harmonic distortion
(THD) ranging from 5% to 25%, voltage sags with
depths of 10-40%, voltage swells with magnitudes of
10-30%, and normal operating conditions, each
represented by 3,000 samples.

The CNN architecture consists of three
convolutional layers with 32, 64, and 128 filters,
respectively, followed by max-pooling layers to
extract discriminative spatial and spectral features
without reliance on handcrafted filters. The resulting
feature vectors are supplied to an LSTM network with
two hidden layers and 100 memory units, trained on
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sequences of 200-time steps. This structure
effectively captures temporal dependencies caused by
fluctuating solar irradiance (200-1,000 W/m?) and
dynamic load variations (0.5-1.5 p.u.). Within the
control framework, the CNN-LSTM acts as an
intelligent supervisory layer that classifies PQ
disturbances and predicts their evolution. The
generated outputs provide reference compensation
signals for the UPQC controller, enabling adaptive
real-time mitigation. The proposed approach achieves
over 97% classification accuracy and reduces PQ
response latency to less than 20 ms, confirming its
suitability for real-time control applications [37].
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Figure 4. Architecture of Convolutional Neural
Network (CNN)

The Convolutional Neural Network (CNN)
architecture shown in Figure 4 illustrates the main
stages of information processing from input to output.
Raw input signals, such as distorted power system
voltage and current waveforms, are applied to the
input layer. These signals pass through multiple
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convolutional layers, where learned filters extract
significant features including harmonic distortion,
voltage sags, swells, and transient disturbances.
Pooling layers reduce dimensionality while
preserving key features, and the final layers generate

feature representations suitable for accurate
classification and control decision-making.
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Figure 5. Internal Architecture of Long Short-Term
Memory (LSTM) Network

Figure 5 shows the internal architecture of a
Long Short-Term Memory (LSTM) cell, which is
partly developed to successfully model long term
dependencies in sequential data. LSTM cell functions
on three major gates comprising the forget gate, the
input gate and the output gate. The forget gate decides
what information of last cell state (ct) is to be
forgotten. The input gate, comprised of a sigmoid and

2788

tanh activation, determines what new information is
to be added to the current input (xt) and prior hidden
state ht) in order to update the cell state (c ct). It is
then controlled by the output gate on the extent to
which the updated cell state is added to the next
hidden state (ht) on which a prediction is made or
additional calculations are made.

Control objective (cost function to minimize):

J = THD + az INdc—Vdc*|P + o3 PF_error  (36)
Composite loss for optimization; CNN-LSTM is
trained/adjusted to minimize J.ai are weighting
scalars, Vdc* desired DC voltage.

CNN convolution operation (1D conv over signal
window X):

(f * x)[n] = XN fImlx[n —m] (37)
Discrete convolution; CNN filters f extracts local
spectral/spatial features from sampled waveform
window x[n].
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Figure 6. Block Diagram and Flowchart of CNN-
LSTM Hybrid Model

Figure 6 illustrates the proposed CNN-LSTM
hybrid learning model developed to enhance power
quality in photovoltaic (PV)-integrated distribution
networks through intelligent control of a
DSTATCOM. The process begins with the real-time
acquisition of grid voltage and current signals at the
Point of Common Coupling. These signals are
continuously monitored to detect common power
quality disturbances such as voltage sags and swells,
harmonic distortion, flicker, and load unbalance.
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Since raw measurements are often affected by noise
and scaling variations, the collected data first undergo
normalization and noise filtering to ensure reliable
and consistent input to the learning framework.

The pre-processed signals are then supplied to
the Convolutional Neural Network (CNN) module,
which is responsible for extracting spatial and
frequency-domain features from the waveform data.
By scanning the signals in small segments using
convolutional filters, the CNN automatically
identifies characteristic patterns associated with
power quality disturbances, such as harmonic
signatures and voltage fluctuation profiles. Through
successive convolution and pooling operations, the
dimensionality of the data is reduced while
preserving the most relevant disturbance-related
features, enabling efficient and accurate feature
representation without the need for handcrafted signal
processing techniques.

The extracted feature vectors are subsequently
fed into the Long Short-Term Memory (LSTM)
network, which is designed to capture temporal
dependencies in time-varying signals. The LSTM
analyzes how power quality disturbances evolve over
time by learning from historical and real-time patterns
influenced by fluctuating solar irradiance and
dynamic load conditions. This temporal learning
capability allows the model to predict future
disturbance trends and corresponding compensation
requirements with high accuracy. By retaining
relevant information through its memory cells and
selectively forgetting irrelevant data, the LSTM
enhances the predictive capability of the overall
control system.

Following the LSTM stage, the processed
outputs are passed through a fully connected layer
that performs regression to estimate optimal reference
compensation signals. These signals represent the
required reactive power support and harmonic
compensation needed to maintain grid voltage
stability and power quality. The DSTATCOM control
unit uses these reference signals to generate Pulse
Width Modulation (PWM) switching pulses for the
Voltage Source Converter. As a result, the
DSTATCOM injects or absorbs reactive power and
compensating currents in real time, enabling effective
harmonic suppression, voltage regulation, and power
factor improvement. The CNN-LSTM hybrid model
combines the strong feature extraction capability of
CNNs with the temporal prediction strength of
LSTMs, forming a robust and adaptive solution for
power quality management. The mathematical
formulations governing the model ensure real-time
operation, fast convergence, and adaptability to
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changing grid conditions. By significantly reducing
Total Harmonic Distortion and improving voltage
stability, the  proposed = CNN-LSTM-based
DSTATCOM control strategy enhances the reliability
and resilience of PV-integrated smart distribution
networks, making it well suited for future intelligent
power systems [38].

Feature map activation (after conv + nonlinearity):

h®Pn] = a((f© *x)[n] +b® (38)
Each conv layer | applies filter, bias b®, then
nonlinear activation o. Output is used as input

sequence to LSTM.

LSTM cell equations (per time step t):

fo = o(Wsx; + Ughy_q + by) (39)
ir = oc(Wyx; + Uh;_; + b;) (40)
C, = tanh(W.x, + U .H,_, + b,) (41)
¢ = f[tOcpoq + 0 Oc, (42)
o, = o(W,x; + Uyhi—q + by) (43)
h; =0, 0O c;_; +tanh O ¢, (44)

Standard LSTM gating equations: forget f;, input i,
candidate o, cell state c;, output gate o, hidden state
h. Here x, are CNN-extracted features at time step t.

The conventional NN LSTM weight update equation
is given as:

owon+1) =whn) + ue(n)x(n) (45)
where w(n) is the filter weight vector, p is the step-
size parameter, e((n) is the error signal, and x(n) is the
input vector.

In CNN, an error term is introduced to avoid
instability:

on+1) = (1-pw)w®) + pe(n)x(n) (46)
where v is the leakage factor.

This provides better tracking performance and
ensures stable adaptation, especially under non-
stationary conditions of PV output and grid
disturbances.

The error function minimized during ANN training is
the Mean Squared Error (MSE):

N
1 2
== (dm - ym)

n=1
where d(n) is the desired response, y(n) is the ANN
output, and N is the number of training samples.
The forward propagation of ANN outputs can be
mathematically expressed as:

(47)
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(48)

yj = f (Z w;jx; +bj>
i=1

where xi are the input signals, wij the connection
weights, bj the bias term, and f () the activation
function (sigmoid, ReLU, or tanh).

The shunt inverter eliminates harmonics and
regulates DC-link voltage, while the series inverter
compensates for voltage sags/swells [19]. Using the
instantaneous power theory, the reference active and
reactive power components are computed as:

vaia + vpif
vaiff — vPia

(49)
(50)

p(®)
q(t) =

where va, vp and ia, ia, ip are the o—f transformed
voltages and currents.

ANN forward model (single hidden layer, vector
form):

y() = pW oW x(t) + by) + by) (1)
where x(t) = input vector (voltages/currents/errors/PV
measurements), W1, W2 = weight matrices, o(-) =
hidden activation, ¢(-) = output activation.

Instantaneous control error (for ANN output):

e(t) = yref(t) _y(t) (52)
where yrei(t) are desired current/voltage references for
the UPQC.

Leaky-regularized instantaneous cost (mean-square
form):

J©) = 3@ P+ 50w, Bl W, 1) (53)

>0 is the leakage (weight-decay) coefficient; ||-[Ir is
the Frobenius norm.

Discrete leaky-LMS weight update (matrix form):

a
Wisr = (1 = D)Wy + nAW,; AW, = xkeﬂﬁ

(54)
where 1 is step size, dy/Ou is the local Jacobian
mapping ANN internal outputs u to y (chain-rule
term).

Control law mapping ANN output to inverter
reference (shunt branch):

ish,ref(t) = er(t) + y(t) (55)
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where ish ref iS the shunt inverter current reference, and
Kp is a proportional gain matrix (hybrid ANN +
conventional term).

THD objective (to be minimized by controller):

SR V2
THD = x 100%

Vi

(56)

where:
V1 = RMS value of fundamental voltage
Vn» = RMS value of nth harmonic component

Lyapunov candidate and continuous adaptive law
(stability-driven):

1 1
V(t) = 2 (lle() I+ % I W()— W1z (57)
W) = —yx(t) e(®)”

— AW(t) (58)
where y>0 is an adaptation gain, W* an (unknown)
ideal weight; the —AW term is leakage for
boundedness.

Projection operator to enforce actuator (inverter) and
parameter bounds:

W) = Projo(—yx(t) e(®”
— AW(t)) (59)
Proja(+) projects the weight update onto admissible
set Q (keeps W within physically meaningful bounds;
ensures [ul < Umax.

Combined UPQC (series + shunt) compensation
constraint (power balance / reference synthesis):

ve(t) = v (t) + Z,is(t) (series branch) (60)
ish,ref(t) =i, (t) - iload,comp (®) (61)
Vgnrer (€) = =24 (i1(6) = isnrer (©)) (62)

where vs = source voltage, v, = load voltage, Zs, Z,
are series and load impedances; these equations link
ANN-generated references to actual series/shunt
injections so active compensation reduces harmonics
and corrects voltage sags/swells.

The mathematical expressions explain the
understanding of the CNNLSTM hybrid model in the
design of the DSTATCOM to control smartly in the
enhancement of power quality in PV integrated
distribution networks. The model starts with picking
voltage and current waveforms which contain
distortions like harmonics, sags, swells and
unbalanced currents. The CNN component of the



Manjur Elahi et al./Journal of Solar Energy Research Volume 11 Number 1 Winter (2026) 2780-2801

model examines such signals in a scanning of small
structures and detecting significant spatial features
that show distortion patterns. These features that can
be extracted are useful to determine the disturbances
in power quality with high precision. These
characteristics are then transmitted to the LSTM
element that is specialized in learning temporal
trends.

It monitors the changes in the distortions with time,
which assists in foreseeing the disturbances and
compensation requirements in the future by the
model. LSTM stores the appropriate information
about the past and dismisses the insignificant details
through internal memory mechanisms and provides
relevant information, which allows making an
accurate forecast of compensating reference currents.
The last layer of the model receives the processed
information and provides the control signals to the
Voltage Source Converter of the DSTATCOM.
These signals are used to inject or absorb reactive and
harmonic currents to recreate balance in voltage,
minimize the overall distortion in harmonic, and
enhance power factor. Altogether, as a whole, these
mathematical models allow the CNNLSTM model to
learn, predict, and dynamically control the
DSTATCOM in real-time, which would stabilize the
delivery of high-quality power in PV-integrated

systems.
The proposed CNN-LSTM  framework
employs a precisely defined deep learning

architecture to ensure robustness and reproducibility.
The CNN consists of three convolutional layers with
32, 64, and 128 filters, a kernel size of 3x3, ReLU
activation, and 2x2 max-pooling, followed by batch
normalization and dropout (0.3) to mitigate
overfitting. Feature vectors are passed to a stacked
LSTM comprising two layers with 100 hidden units
each, trained using the Adam optimizer with a
learning rate of 0.001, batch size 64, and 100 training
epochs. The dataset originates from IEEE-1159
standard power-quality disturbance waveforms
supplemented with experimental data from a PV-
integrated distribution test feeder, sampled at 10 kHz.
Preprocessing includes noise suppression, STFT-
based time—frequency transformation, normalization,
and segmentation into 200-sample sequences.
Generalization performance is quantified using five-
fold cross-validation, yielding a mean classification
accuracy of 97.3% + 1.1%, precision of 96.8%, and
F1-score of 97.0%. Closed-loop stability is formally
established through a Lyapunov-based bounded-input
bounded-output  (BIBO) analysis, confirming
convergence under irradiance and load uncertainties.
The proposed controller maintains voltage THD
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below 5% in compliance with IEEE-519, while
voltage magnitude and flicker limits satisfy IEC-
61000 standards, validating regulatory conformity for
grid-connected PV systems.

5. MATLAB Simulink Model

MATLAB and Simulink offer a combined
environment of the design and implementation of the
CNN-LSTM based intelligent adaptive DSTATCOM
control system to improve power quality in
photovoltaic (PV)-integrated distribution networks.
The electric network construction in Simulink with
Simscape Electrical components, the PV array,
distribution lines, nonlinear loads, and nonlinear
loads based on Voltage Source Converter starts the
model development. The steps involved in
developing and preprocessing the voltage and current
waveform datasets at differing irradiance and load
conditions, which subsequently is utilized in training
the CNNLSTM model are enabled by MATLAB
through Deep Learning Toolbox. The Convolutional
Neural Network identifies spatial attributes in
segments of waveforms, and the LSTM identifies
some temporal relationships and predicts the
compensating current references. When the deep
learning model is trained an export into Simulink as a
predictive block is performed with Deep Learning
Toolbox block or MATLAB Function with embedded
network parameters. The controller is also linked to
PWM modulation and gating signal generating blocks
to energize DSTATCOM inverter. MATLABsS fixed-
step solvers are guaranteed to run in real-time and the
co-simulation of the deep learning controller and the
power electronics system is possible with Simulink.
The platform allows visualization of performance
based on tools, tracking of the performance (i.e. THD,
voltage stability, power factor, etc.), and
compensation delay. This MATLAB-Simulink
architecture will provide easy design, testing and
verification of smart adaptive DSTATCOM
controllers.

Table 1. Input Parameters for MATLAB/Simulink
Model of DSTATCOM with CNN-LSTM Hybrid

Controller
Category Parameter Symbo  Value Unit
|
PV System PV Array  Ppy 50-100 kW
Parameters  Rated Power
PV DC  Vnc 700 - V
Voltage 800
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DC-Link Vdc 760 \
Nominal
Voltage
Grid Grid Supply Vs 415 (L- V
Parameters  Voltage L RMS)
Grid ff 50 Hz
Frequency
Reactive Qvar +30 kVA
Power R
Variation
Load Nonlinear PL 20-60 kw
Parameters Load Power
Total THDin 14-25 %
Harmonic
Distortion
(Input)
Compensatio  td <5 ms
n Delay
Converter Switching fsw 10 kHz
Parameters  Frequency
Sampling Ts le-5 s
Time
Grid - Standar -
Coupling d IEEE-
519
CNN- CNN Layers - 2-3 -
LSTM (Conv +
Model Pool)
Parameters
LSTM - 100 - -
Hidden Units 150
Control - 0.001 -
Learning
Rate
System THD After THDou <5 %
Performanc  Compensatio t
e Metrics n
Power Factor  PFout >0.95 -
After Control
Voltage VSI 095-1 pu
Stability
Index

Table 1 summarizes the key input parameters
used for developing the MATLAB/Simulink model
of the DSTATCOM integrated with a CNN-LSTM
hybrid controller. The PV system parameters define
the operating range of the photovoltaic source,
including rated power and DC-link voltage to ensure
stable energy injection. Grid parameters such as
supply voltage, frequency, and reactive power
variation represent realistic distribution network
conditions. Load parameters capture nonlinear
loading effects and initial harmonic distortion levels.
Converter  parameters  specify  high-frequency
switching and precise sampling to enable fast
dynamic control. The CNN-LSTM model parameters
indicate the network depth, learning capacity, and
training stability for adaptive control. Finally, system
performance metrics confirm compliance with IEEE
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standards by ensuring low THD, improved power
factor, and enhanced voltage stability.

PCC PCC
Voltage Current

Signal
Preprocessing

Normalization &
Noise Filtering

Bandpass Filter

STFT Analysis
st NS N NSNS

- - | Feature Extraction

(CNN)

e

i

[

i | CNN-LSTM |} -
i

|

CNN-LSTM Hybrid Model

Figure 7. MATLAB model block diagram

Figure 7 shows the block diagram of
MATLAB/Simulink of the proposed PV-integrated
distribution network using intelligent DSTATCOM
control system. The PV array supplies the system
with power through a boost converter and ensures the
stability of DC link. At the PCC, the nonlinear loads
are compensated by the DSTATCOM inverter, which
is coupled with an inductor and filter which is
connected to the distribution network. The smart
adaptive control system offers CNN as the signal
feature extraction method and LSTM as temporal
pattern identification. The performance evaluation
module takes PCC voltage and current measurements
and optimizes an adaptive algorithm. The quality
indices of power such as THD, harmonics and
sag/swell are computed to control the PPM generator
in order to compensate the real time.

6. Simulink Results

In this section Simulink results shows the
dynamic performance analysis of the proposed CNN-
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LSTM hybrid-controlled DSTATCOM in a PV-
integrated distribution network. This section brings
out the fact that the intelligent controller is effective
in mitigating power quality problems like harmonics,
voltage sags, swells, reactive power imbalance, and
DC-link voltage variations with different irradiance
and nonlinear load conditions. The outcomes reveal
real-time compensation functions, such as better as
well as the quality of the waveform, lesser Total
Harmonic Distortion, stability in the DC-link voltage,
and elevated power factor.

Table 2. Test cases for the study

Test Irradiance  Load Disturb  Objective
Case (W/imz2) Type ance

& Type

Power
TC1: 400 Linear Low Test  Vdc
Low Load Voltage  stability &
Irradia (10 (Sag) voltage
nce, kw) support
Light under weak
Load PV
TC2: 600 Nonlin  High Evaluate
Mediu ear Harmon  harmonic
m Load ics suppression
Irradia (25 (THD & filtering
nce, kW) ~21%) performance
Nonline
ar Load
TC3: 900 Unbala  Voltage  Assess load
High nced Unbalan  balancing &
Irradia Load ce (5%)  reactive
nce, (30-38 compensatio
Unbala kw) n
nced
Load
TC4: 500—1000 Nonlin  Voltage  Test
Rapid —500 ear Flicker temporal
Irradia Load & adaptability
nce (40 Dynami of  CNN-
Fluctua kW) c LSTM
tion Change
TC5: 700 3-Phase  Reactiv  Evaluate
Heavy Motor e Power reference
Nonline Load Demand tracking &
ar (50 PF
Motor kw) correction
Load
TCé6: 1000 Nonlin  Sag Hybrid
High ear (15%), response:
PV Mixed Swell sag/swell/ha
Power Load (10%), rmonic
with (45 Harmon  compensatio
Grid kW) ics n
Fault

Table 2 presents six test cases evaluating the
CNN-LSTM-based DSTATCOM control under
varied conditions, including irradiance levels, load
types, and disturbances. Objectives cover Vdc
stability, harmonic suppression, load balancing,
dynamic adaptability, power factor correction, and
hybrid voltage disturbance mitigation, ensuring
robust performance across realistic photovoltaic-
integrated scenarios.
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Figure 8. Dynamic performance PV system using
DSTATCOM
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Figure 8 illustrates the steady-state and
dynamic performance of the PV-integrated
DSTATCOM  system  under  grid-connected

operation. The grid voltage (Vabc) waveforms show
balanced, sinusoidal profiles, confirming effective
voltage regulation despite disturbances.
Correspondingly, the grid current (labc) maintains
near-sinusoidal shape with reduced distortion,
indicating proper current injection and harmonic
suppression. The DC-link voltage response
demonstrates fast rise and stable regulation around its
reference value, highlighting the robustness of the
control strategy in maintaining energy balance within
the converter. The active and reactive power plots
reveal rapid stabilization of active power while
reactive power is effectively compensated, enabling
near-unity power factor operation. Figure 1 confirms
that the intelligent control scheme ensures stable DC-
link regulation, improved power quality, and efficient
real-reactive power management under varying
operating conditions.
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Figure 9. Dynamic performance of PV system under
various irradiance changes

Figure 9 illustrates the dynamic performance of
the PV system under different irradiance conditions,
highlighting the effectiveness of the control and
MPPT strategy. In case (a), a sudden increase in

2794

irradiance causes a rapid rise in output power, and the
system quickly settles at a new higher steady-state
value, indicating fast tracking and minimal transient
oscillations. In case (b), a sudden decrease in
irradiance results in a sharp drop in power, with the
controller promptly stabilizing the output at the
reduced level. Case (c) demonstrates fluctuating
irradiance, where the PV power continuously varies;
however, the system closely follows these changes
with smooth transitions and limited ripple. The case
(d) represents partial shading conditions, producing
multiple power peaks. The PV system successfully
adapts to these nonlinear variations, maintaining
stable operation and effective power extraction under
complex and realistic environmental disturbances.
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Figure 10. Dynamic current analysis of PV System

Figure 10 illustrates the time-dependent
behaviour of a PV-integrated distribution system
under DSTATCOM in the short-term. The first
subplot indicates the distribution of source current
which is more equilibrium in the long run as the
DSTATCOM counterbalances. The second subplot
indicates a current injected by the shunt compensator
which is actively opposing the unbalanced load
currents and suppressing harmonics. The lower
subplot displays the DC link voltage which is steady
at approximately 200 V, which means effective
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energy storage management and system performance
stability.

4000 |
=
= 2000 3
@
= /'\
8 -
o oF 1
% Load active power
<< — Grid active paower

-2000F |——PV power

0.2 0.22 0.24 0.26 0.28 0.3
Time (s)

Figure 11. Active power of proposed system

Figure 11 shows that active power relations of
a PV-integrated distribution system vary significantly
in the short term (0.2 -0.3 s). The yellow curve is the
load active power and this curve is growing at a high
rate at 0.255s and it means that there is a sudden
increase in load demand. The blue curve indicates
grid active power and in turn increases to meet the
extra load and level at 2000 W. The red curve is that
of PV power which is relatively constant and then
slightly declines due to the increase in load, indicating
the poor ability of the PV system to respond swiftly
to changes in load. The diagram shows how the grid
and PV system work together to ensure that there is a
balance between power.
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Figure 12. Reactive power of proposed system
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Figure 12 shows the dynamic of the reactive
power of a distribution system at a short period
(0.260.3 s). The yellow line is the load reactive power
and this increases steeply at the time of 0.25 s
meaning that there is a higher reactive demand. The
grid reactive power is indicated on the blue line and
the grid reactive power is lower and slower reacting
and stabilizing lower than the load demand,
indicating a deficit. The red dashed line is the shunt-
injected reactive power of a compensating device
which rises quickly to correct the reactive power
anomaly. This shows how the shunt compensation is
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effective to ensure stability of the system by
minimizing reactive power load in the grid.

Table 3. Voltage Regulation Performance Under
Different Irradiance and Load Conditions

Test Irradiance Load Vs Vs Vdc
Case (W/m?) (kw) Before After Stabilized
(\%) (2%
TC1 400 10 390 415 760
TC2 600 25 385 416 763
TC3 800 40 395 417 758
TC4 1000 50 398 415 762
TC5 500 20 388 416 761
TC6 700 35 392 417 764

Table 3 shows the capability of CNN-LSTM-
based DSTATCOM to stabilize voltages in a variety
of irradiance and load conditions. In all the six test
cases, the voltage at the common coupling point (Vs)
prior to compensation indicated appreciable
variations with nominal values because of the voltage
sags, load changes and variations in the PVs. The
improvement of Vs was observed after the
DSTATCOM intervention, and it became closer to
the desired voltage, which is an indication of the
effective regulation of voltage. It can be seen that the
stabilized DC-link voltage (\Vdc) was held constant at
asmall range of 758764 V under all conditions, which
showed the controller could stabilize the lower energy
storage and injection reference even in the face of
dynamic shifts in the load or solar irradiance. It is
important to note that despite high load (TC4, 50 kW)
or the irradiance changing rather rapidly (TC4), the
controller successfully reduced the voltage dips to
maintain the stability of the system. Equally nonlinear
and unbalanced load (TC2, TC3) was effectively
addressed and Vs returned to nominal values and Vdc
stabilized, which suggests a sound reactive power
support and harmonic reduction.

I Vs Before Regulation
Vs After Regulation
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Figure 13. Voltage Regulation Performance
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Figure 13 (bar graph) illustrates the
comparative performance of velocity regulation in
different irradiance and load conditions. The bars are
a collection of voltage before and after regulation. It
points out that irrespective of the change in solar
irradiance and load demand, the controller manages
to stabilize voltage; Vdc is within the preferred
operating range. In general, the experiment supports
the idea that hybrid CNN-LSTM controller will
improve the quality of power and minimize the
deviations of voltages, stabilize DC-link voltage and
assure the dependability of the functioning under
different and changing operating conditions in the
PV-integrated distribution networks. This points to its
possible adaptive support of real-time voltage.

Table 4. Harmonic Distortion Improvement Using
CNN-LSTM Controller

Il THD Before (%)
THD After (%)

TCG

TCS

TC4

TC3

TC2

TC1

T
0 5 10 15 20
Total Harmonic Distortion (%)

Figure 14. Harmonic Distortion Improvement Using
CNN-LSTM Controller

Figure 14 shows how harmonic distortion is
improved with CNN-LSTM controller. The bar graph

Test THD THD Harmonic PF PF s .
Case  Before  After Reduction  Before  After analyses tota! harmonlc distortion (THD) before and
(%) %) (%) after control in various test cases.
TCL 225 4.5 80.0 0.82 0.98 Table 5. Reactive Power Compensation and
TC2 182 3.8 79.1 0.84 0.99 Response Accuracy
TC3 210 4.0 81.0 0.80 0.97 Test Q Error Comp.  Steady-
Case Demand Injected (%) Delay State
TC4 198 35 82.3 0.78 0.98 (KVAR)  (KVAR) (ms) Error
TC5 165 32 80.6 0.83 0.99 (%)
TC6  20.1 4.1 79.6 0.79 0.98
TC1  +25 +24.5 2.0 45 1.2
Table 4 shows the harmonic distortion TC2 30 -29.2 2.6 4.2 1.0
mitigation results of the CNN-LSTM-based TC3  +18 +17.6 22 39 14
DSTATCOM with different load and irradiance TC4 22 214 2.7 41 1.3
conditions. The Total Harmonic Distortion (THD) TC5  +28 273 25 43 1.2
prior to compensation is in the range of 16.5 to 22.5 TC6 26 254 23 ) 11

indicating a large amount of harmonic contamination
as a result of nonlinear loads and power quality
disturbances. With the adoption of the hybrid
controller, the values of THD drop significantly to
between 3.2 and 4.5 with harmonic reduction rates of
about 79 - 82 showing that the controller has a high
harmonic  filtering and suppression ability.
Simultaneously, the power factor (PF) also improves
significantly in all test cases. Before the
compensation, PF values are between 0.78 and 0.84
which points to lagging conditions caused by reactive
power needs. Following DSTATCOM action, PF
increases to 0.97 - 0.99, indicating almost unity power
factor and effective reactive support of power. It is
important to note that despite an extreme nonlinear
load (TC5) or variable conditions (TC4), the
controller ensures low THD and high PF, which
means strong dynamic operation.
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Table 3 shows the compensation performance
and accuracy of response of CNN-LSTM-based
DSTATCOM in six test cases. The table shows a
comparison between the reactive power demand (Q
Demand) and the actual reactive power injected (Q
Injected) by the controller and the percentage error,
compensation delay and steady-state error. In all
situations, the DSTATCOM is able to track the
reactive power requirements with an error of 2.0 to
2.7 that shows high tracking accuracy. The
compensation lag is small, ranging 3.9 ms - 4.5 ms,
implying the rapid dynamic reaction of the controller
to instantaneous changes in load or perturbations in
the voltage. The steady-state errors, also, are very low
(1.014%), and, it indicates that the system is gaining
stable and accurate reactive power assistance once
transient effects have died down. Positive and
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negative Q demands are the inductive and capacitive
reactive power requirements, respectively, and the
controller manages the two well, so that there is
compensation proper, no matter what type of load is
connected or what condition the load is operating
under.

Error (%)
49

Q Injected
(kVAR) o
404

Steady-State Error (%)

0.5‘

1.2

—@~TC1 —fi=TC2 —f~TC3 —@-TC4 1G5 —@-TC6
Figure 15. Reactive Power Compensation and
Response Accuracy

Figure 18 illustrates the reactive power
compensation performance and dynamic response
accuracy of the intelligent DSTATCOM system
across six test cases (TC1-TC6). The radar chart
compares key parameters: reactive power demand (Q
Demand), injected reactive power (Q Injected),
percentage error, compensation delay, and steady-
state error. Across all test cases, the injected reactive
power closely tracks the demand, with deviations
ranging from 0.6 to 0.8 kVAR, highlighting the high
accuracy of the compensation. The percentage error
remains below 3%, confirming minimal discrepancy
between requested and supplied reactive power.
Compensation delay values range from 3.9 to 4.5 ms,
indicating a fast dynamic response suitable for
mitigating voltage fluctuations and harmonics in real-
time operation. Steady-state errors are maintained
between 1.0% and 1.4%, demonstrating that the
system stabilizes efficiently after transient events.
Notably, positive and negative reactive power
demands are effectively compensated, illustrating
bidirectional  capability of the controller.
Comparatively, TC2 and TC4 show slightly higher
errors, suggesting minor sensitivity to large reactive
power swings.

Table 6. Comparison of Control Techniques

Method TH PF Vdc Respon Rating
D Erro se Time
(%) rv) (ms)
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Pl 128 09 18 11 Moderate
Controller 0

[1][3][8]

Fuzzy-PID 9.5 09 =14 9 Good

[2][9][12] 3

ANN-Based 7.2 09 10 7 Very

Control 5 Good

[14][15][18]

LSTM 5.8 09 7 6 Excellent
Controller 7

[1][2]

CNN 5.1 09 46 5 Excellent
Controller 7

[18][19][24][

26]

CNN-LSTM 35 09 3 3.8 Qutstandi
Hybrid 9 ng

Table 6 presents a comparative evaluation of
various control techniques implemented for reactive
power compensation and voltage regulation in PV-
integrated distribution networks. The table highlights
five key performance metrics: Total Harmonic
Distortion (THD), power factor (PF), DC-link voltage
error (Vdc Error), response time, and overall rating.
Traditional PI controllers exhibit the highest THD of
12.8% and a moderate power factor of 0.90, with +18
V DC-link voltage fluctuations and a response time
of 11 ms, reflecting limited dynamic performance.
Fuzzy-PID  controllers improve performance,
reducing THD to 9.5% and enhancing PF to 0.93,
while slightly improving voltage stability and
response speed. ANN-based control further reduces
THD to 7.2%, with improved PF (0.95), lower DC-
link error (£10 V), and faster response (7 ms), earning
a “very good” rating. LSTM and CNN controllers
provide significant enhancements in harmonic
mitigation, PF correction, and response speed,
achieving THD below 6% and DC-link errors under
+7 V. The CNN-LSTM hybrid controller
demonstrates the best performance, minimizing THD
to 3.5%, maintaining near-unity PF (0.99), DC-link
error of £3 V, and a rapid response time of 3.8 ms.
This confirms the hybrid approach’s superiority in
ensuring high-quality, fast, and precise power
regulation under dynamic conditions.

7. OPAL-RT Validation

To check the real time practicability, the
suggested CNN-LSTM-based UPQC control plan is
executed into an OPAL-RT Hardware-in-the-Loop
platform. Such validation demonstrates operational
efficiency, dynamic responsiveness and solid PQ
suppressiveness to the highly changing PV and load
circumstances presented in figure 16.
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Figure 16. OPAL-RT Laboratory setup

The pattern of PV irradiance varies with 200-
1000 W/m? in order to produce quick rises and falls
of the solar on the current injection. Dynamic voltage
support is tested by programmable (+20) sag/swell of
grid supply voltage of 11 kV (L to L). Nonlinear load
current 50 -120 A and a harmonic distortion of 20-30
per cent cause major PQ disturbance. The reference
voltage of DC-link is set to 700 V. The CNN-LSTM
model provides reference compensation signals of +
25 kVAR, which is used to regulate the active and
reactive power instead of passive power control
because of the 20 kHz sampling rate that ensures
synchronization of real-time control execution.
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Figure 17. Fault location in three-phase grid

Figure 17 illustrates the fault position taken on
the three-phase distribution feeder during testing. The
disturbance is injected at a mid-feeder in such a way
that the voltage goes down and the current contains a
lot of harmonic information of conditions at the grid

end of PV systems. This real time injection allows
evaluation of rapid transient responsiveness,
forecasting of disturbances, and flexibility of the
controller within unexpected operating alterations.
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Figure 18. Injected voltage into the grid

Figure 18 illustrates the voltage injected by the
UPQC’s shunt and series converters to mitigate
power quality disturbances. The figure highlights the
precise compensation of voltage sags, swells, and
harmonics, demonstrating the system’s fast dynamic
response and effective stabilization of grid voltage.
The injected voltage closely follows the required
profile, ensuring minimal deviation and improved
overall power quality.
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Figure 19. Grid voltage using UPQC

Figure 19 assures the quality of restored grid
voltage waveforms, with a lower degree of harmonic
contamination, and controlled amplitude within the
allowed configurations, which confirms the
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efficiency and stability of the CNNLSTM-based
control structure in real-time implementation of the
OPAL-RT.

8. Conclusion
The intelligent adaptive DSTATCOM
controller, based on a Convolutional Neural

Network—Long Short-Term Memory (CNN-LSTM)
hybrid model, demonstrates superior numerical and
operational performance in improving power quality
in PV-integrated distribution systems. The hybrid
controller effectively stabilizes the DC-link voltage
within a narrow range of 758-764 V under all
dynamic conditions of irradiance and load,
maintaining a voltage error below 3 V, which
highlights its high voltage regulation capability. It
also significantly mitigates harmonic distortions,
reducing the Total Harmonic Distortion (THD) from
a pre-compensation range of 16.5-22.5% to only 3.2—
4.5%, corresponding to a harmonic suppression of
approximately 79-82%. Additionally, the controller
substantially enhances the system power factor from
0.78-0.84 to near unity levels of 0.97-0.99, providing
excellent reactive power support. In terms of dynamic
response, the CNN-LSTM controller exhibits the
fastest compensation, achieving response times as
low as 3.8 ms, compared to Pl (11 ms), Fuzzy-PID (9
ms), ANN (7 ms), and standalone CNN or LSTM
controllers (5-6 ms). Reactive power tracking is also
highly accurate and stable, with errors between 2.0—
2.7% and compensation delays of only 3.9-4.5 ms,
while the steady-state error remains below 1.0-1.4%.
The controller effectively manages both inductive
and capacitive reactive power demands without
significantly raising the voltage at the point of
common coupling, even under high load conditions
(50 kW) and widely varying irradiance (1000 W/m2).
By leveraging CNN’s spatial feature extraction and
LSTM’s temporal learning capabilities, the hybrid
model adapts efficiently to nonlinear disturbances
and real-time parameter variations. The CNN-LSTM-
based DSTATCOM consistently outperforms PI,
ANN, Fuzzy-PID, CNN, and standalone LSTM
controllers in THD reduction, power factor
correction, voltage stabilization, fast response, and
accurate reactive power compensation. Overall, the
results confirm that this intelligent controller is highly
robust, adaptive, and effective in real-time
enhancement of power quality, establishing its
suitability for smart, Al-driven PV-integrated
distribution networks.
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Nomenclature

Symbol Description

eta Energy efficiency (percent)

etapce Power conversion efficiency
(percent)

etaref Effic_ie_ncy of PV cell at standard test
condition (percent)

id Shunt-filter current in d-axis (A)

iq Shunt-filter current in g-axis (A)

Im Maximum power output point]
current (A)

Isc Short-circuit current (A)

k Discrete time index (integer)

Psi Exergy efficiency (percent)

Qloss Heat losses from PV cell (kJ)

STC Standard test condition

Tamb Ambient temperature (degC or K)

Tcell PV cell temperature (degC or K)

Ts Sampling period (s)

Tsun Sun temperature (degC or K)

vconvd Shunt converter voltage in d-axis (V)

veonvg Shunt converter voltage in g-axis (V)

Voc Open-circuit voltage (V)

vm Maximum power output point]
voltage (V)
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