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1. Introduction 

Government policy and rising public demand to 

reduce dependence on fossil fuels and speed up the 

adoption of renewable and carbon-free resources are 

driving a main transformation in the global energy 

space. This shift requires well-structured energy 

strategies that balance resource saving, 

environmental protection, and economic growth 

particularly in emerging countries [1, 2]. Without 

such measures, achieving sustainable development 

will remain difficult. Solar and wind are projected to 

make the highest contributions to global renewable 

growth, according to the International Energy 

 

A B S T R A C T 

Solar energy is a sustainable and renewable resource that plays a vital role in 

mitigating climate change by reducing greenhouse gas emissions. However, its 

efficiency can be compromised by different operational faults such as dust 

accumulation, surface cracks, or electrical failures. Detecting these issues early is 

necessary to maintain optimum performance and avoid costly system failures. In this 

study, we propose an AI-based approach for automated fault detection in solar panels, 

built on a lightweight deep learning model adapted from the MobileNetV2 

architecture. The model is trained and validated on a publicly available dataset with 

data balancing and augmentation to improve classification accuracy across different 

fault categories. To assess practical feasibility, we deployed the system on an 

embedded Jetson Nano platform. Extensive results and comparisons demonstrate the 

superior performance of the proposed method, achieving an accuracy of 93.14% and 

an F1-score of 93.12%, while maintaining a low model size (2.8M parameters) and an 

inference speed of 44.4 ms per image on the Jetson Nano, which is fast enough to 

meet real-time inspection requirements in embedded devices. Overall, the findings 

indicate that our solution provides an effective framework for on-site solar panel 

monitoring and maintenance without the need for cloud resources. 
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Agency (IEA) [3]. Nonetheless, solar and wind 

reliability depend on the effectiveness of the 

maintenance of frameworks that ensure reliable 

energy generation. Solar energy, which is the 

production of electricity from sunlight based on the 

panels of photovoltaic (PV), offers important 

benefits with economic stats and remains highly 

accessible because of its worldwide availability and 

the growing request for electricity power. A main 

challenge lies in the common neglect of power plant 

monitoring and maintenance [4]. Monitoring is 

critical to the systems properties (guarantee the 

performance, safety, and cost-effectiveness). While 

fossil fuel plants need to review boilers and turbines, 

operators must continually monitor performance. 

The installations of solar power face challenges like 

dusting, shading, cracks, and other damage on the 

surface, which can meaningfully reduce the 

efficiency of energy if left unrestricted. In addition, 

in order to decrease output energy, deserting these 

issues leads to shorter asset lifespans and higher 

costs. Preventive and condition-based maintenance 

are preferred, as they lessen downtime and 

maximize the yield of energy [5]. 

        Field inspections are often costly, need a 

long time, and are dependent on the subjective 

judgment and limited technicians expertise [6]. As 

an alternative way, automated methods of inspection 

have been established by using Artificial 

Intelligence (AI) methods, which have 

fundamentally transformed the situation in terms of 

how are monitored and maintained the power plants. 

In the sector of solar, AI techniques combined with 

computer vision and image processing are applied to 

detect various environmental and technical issues in 

the panels [7]. Deep learning networks, particularly 

Convolutional Neural Networks (CNNs), are a 

popular choice to analyze images of PV modules for 

enabling accurate and automated fault detection. 

Different architectures of CNN have been created 

(e.g., GoogleNet, AlexNet, DenseNet, etc.) to 

address key aspects such as accuracy and 

computational cost [8]. These deep networks learn 

the classification tasks through training on a specific 

dataset given with respect to the application domain. 

In case of limited labeled data, transfer learning can 

be used to take advantage of pre-trained models on 

large-scale datasets and adapt them to the solar fault 

detection task. This manner reduces the need for a 

broad annotated dataset in addition to speeding up 

the training process and increasing generalization 

[9].  

      In recent years, embedded systems and CNN-

based inspections through drones have dramatically 

enhanced efficiency as well as real-time fault 

diagnosis. Embedded systems provide local 

processing and low-power consumption without the 

need for cloud resources [10]. This offers earlier 

decision-making, lower latency, and reduced costs 

for data transmission, which are important for solar 

with large-scale the farms of solar. On the other 

hand, drones can provide a flexible and a coverage 

of wide-area by taking photos with high-resolution 

in places that are difficult or dangerous to reach for 

inspectors [11]. These technologies, composed with 

AI-based ones, constitute a robust platform for 

scalable, cost-effective, and reliable monitoring for 

solar panels.  

       Research is presence led for solar fault 

detection by using techniques with different 

imaging, including thermal, electromagnetic, and 

RGB imaging. Images in thermal are recorded by 

Infrared Cameras (IR) to recognize hotspots and 

abnormal heating shapes in PV modules. 

Electromagnetic imaging, like Electroluminescence 

(EL) and Photoluminescence (PL), takes fine-

grained cell-level defects as micro-cracks and 

slothful areas, and flow conditions under a 

controlled environment. In contrast, RGB (visible 

spectrum) imaging employs regular color cameras 

for detecting the issues of surface-level like cracks, 

dust, and shading. The advantage of RGB imaging 

lies in its low cost, easy accessibility, and suitability 

for outdoor scenarios and large-scale applications, 

while other modalities are costly or need unusual 

equipment [12, 13].  

       Dissimilar previous studies in PV fault 

detection that typically emphasize high-complexity 

CNN models or rely on expensive imaging methods, 

our work focuses on RGB imaging in order to 

present a lightweight and computationally efficient 

deep learning method specifically tailored for real-

time fault detection on embedded devices. The 

mixing of MobileNetV2 with optimized data 

augmentation, balanced dataset training, and 

placement on the Jetson Nano demonstrates a 

practical framework for on-site solar panel 

monitoring without depending on cloud resources. 

The key contributions of this work are summarized 

in the following points: 

1- Developing an efficient solar fault detection 

approach utilizing a lightweight deep 

learning model tailored for PV panel 

inspection. 

2- Real-time deployment of the proposed 

model on the Jetson Nano to ensure 

suitability for embedded and resource-

constrained environments. 
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3- Comprehensive analysis of different deep 

learning architectures to identify the best 

trade-off between accuracy and 

computational cost for practical 

deployment. 

2. Related Work 

      The field of solar fault detection has been widely 

investigated using the application of image 

processing and deep learning methods. A review of 

the existing literature shows that these approaches 

can be divided into three main categories based on 

their imaging modality, including thermal imaging, 

electromagnetic imaging, and RGB (i.e., visible 

spectrum) imaging technology [12]. Focusing on 

thermal imaging, H. Ling et al. [14] introduced a 

new method named deep edge-based fault detection 

for solar panel fault detection using deep learning 

and infrared (IR) images, assuming that the image is 

captured by a drone. The authors used a CNN 

architecture for a two-stage process: first for edge 

detection and then for object detection to identify 

faults. The suggested method classifies solar panels 

into two classes: either "normal" or "faulty". They 

used a dataset of 2060 images and achieved a high 

F1 score. Furthermore, the model is tested on an 

RTX 2080 Ti GPU on PC and achieved a frame rate 

of 28 fps. S.  Boubaker et al. [15] investigated both 

machine learning and deep learning techniques for 

fault detection and diagnosis of PV modules using 

infrared thermography images. The authors formed 

two sub-datasets, one for binary classification 

(normal and faulty) and the second for multi-class 

classification contains four types of fault (bypass 

diode failure, soiling, short-circuit, and shading). 

Experimental results offered that models of deep 

learning outperform machine learning methods in 

both binary and multi-class classification with an 

accuracy of 98.71%. Likewise, other works [16-18] 

applied several CNNs and texture-based features 

from thermal images for detecting the cracks and 

hotspots, ensuring that deep learning methods 

provide higher performance under different 

situations. K. Awedat et al. [19] offered an enhanced 

deep learning technique for fault detection in 

photovoltaic (PV) panels by using thermal images. 

The authors enhance the U-Net architecture by 

including Residual Blocks, Atrous Spatial Pyramid 

Pooling (ASPP), and Attention Mechanisms to 

strengthen feature extraction, contextual 

understanding, and accurate fault localization. This 

method attained over 29% higher F1-score and 62% 

better Intersection over Union (IoU) than the 

standard U-Net, while reducing the losing of 

segmentation by 71%. These enhancements 

meaningfully outperform other benchmarks like U-

Net with ASPP and DeepLabV3+, which proves 

strong robustness to environmental noise and 

thermal variability. 

      Based on electromagnetic imaging, Z. Meng et 

al. [20] presented a defect object detection method 

using electroluminescence images based on a DL 

approach. They introduced the YOLO-PV algorithm 

to detect defects in PV modules by modifying the 

original version of YOLOv4 for object detection. 

The method was validated on the EL image dataset 

and achieved 94.5% average precision and 35 fps as 

inference speed on RTX 2080 Ti. Similarly, the 

authors in [21] introduced a comparative study of an 

improved YOLOv5 and YOLOv8 for PV defect 

identification on EL images. The study is evaluated 

on the ELDDS1400C5 dataset and obtained 

mAP@0.5 of 76.3% using the improved YOLOv5 

and improved to 77.7% using YOLOv8. Another 

study [22] focused on CNN feature fusion using the 

ResNet152 and Xception networks to detect faults in 

EL imaging. Additionally, the fusion model 

combined with an attention mechanism achieves 

96.17% accuracy for binary classification and 

92.13% for multi-class defect detection on public EL 

datasets. H. Tella et al. [23] investigated a defect 

detection method in solar photovoltaic (PV) cells 

using drone-captured electroluminescence (EL) 

images through an ensemble-based deep learning 

framework. Eight advanced architectures namely 

AlexNet, SENet, GoogleNet, Xception, ViT, 

DarkNet53, ResNet18, and SqueezeNet, were 

refined on the ELPV dataset (2,624 samples). The 

ensemble methods (voting and bagging) achieved 

accuracies of 68.36% and 68.31%, respectively, 

outperforming the previous hybrid model (61.15%). 

Notably, ResNet18 reached 73.02% accuracy in 

binary classification. 
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      Utilizing the RGB imaging, O. Kilci et al. [24] 

proposed a fault detection method by integrating 

deep learning with machine learning approaches. 

The pre-trained Inceptionv3 was used as a feature 

extraction network, while the three types of machine 

learning classifiers were used for image 

classification including logistic regression, ANN, 

and SVM. The highest accuracy obtained was 83.9% 

using the Faulty Solar Panel Dataset. By using a 

similar dataset in earlier work [24], the authors in 

[25] presented a federated transfer learning 

framework by using a pre-trained VGG-16 model to 

categorize six solar panel types of faults. The model 

realized 74% testing correctness with federated 

learning and 75% with centralized learning. 

Likewise, the study in [26] presented an explainable 

AI model for detecting anomalies in solar 

photovoltaic panels by using an improvement for 

CNN based on the VGG16 architecture. The model 

was integrated with a PyQt5-based user-interface to 

deliver an environment with user-friendly type in 

order to support decision-making. The model 

achieved 91.46% accuracy on the Faulty Solar Panel 

Dataset. Concentrating on snow coverage, the work 

[27] talked about the impact of snow accumulation 

on PV panels by developing a deep learning 

detection model. The model includes a CNN for 

feature extraction and a U-Net for determining the 

areas which covered by snow. Additional study [28] 

addressed the influence of the accumulation of dust 

on solar panels based on a grouping of deep learning 

and machine learning. The DenseNet169 was used 

for feature extraction, while the SVM was used for 

the classification process. In [29], E. Quiles-

Cucarella et al. introduced fault diagnosis in 

photovoltaic (PV) systems using multiple machine 

learning models on a large-scale dataset from a 

laboratory PV system involving seven fault types 

(inverter failures, partial shading, sensor faults, etc.). 

Models were evaluated under Maximum Power 

Point Tracking (MPPT) and Limited Power Point 

Tracking (LPPT) conditions. Results indicate that 

the ensemble bagged tree classifier achieved the 

highest overall accuracy (92.2%), while neural 

networks performed better under MPPT.  

Recent works have also investigated the use of 

embedded devices for providing real-time and 

energy-efficient deployment to various systems of 

solar monitoring. D. Pujara et al. [30] explored real-

time monitoring and control of PV panels by using 

an intelligent monitoring and control device. The 

system employed embedded machine learning to 

classify four conditions, including soiling, partial 

shading, extreme soiling, and standard test 

conditions. An Arduino-based transmitter and 

receiver with a data transceiver for communication 

were used as the edge device. In [31], a panel fault 

in photovoltaic systems using thermal images is 

proposed. A drone equipped with a thermal camera 

was deployed to capture images of rooftop solar 

panels, which were recorded on an onboard SD card 

during flight. These recorded images were later 

uploaded to the Jetson TX2 embedded AI device, 

where a YOLOv3-based convolutional neural 

network was trained and used for fault detection 

involving three types: cell fault, module fault, and 

panel fault. The main outcomes of the methods 

described above are summarized in Table 1. 

Research gap: Despite significant progress in solar 

panel fault detection, some challenges remain. Many 

earlier introduced methods depend on expensive 

thermal or electromagnetic imaging techniques, 

which limit their scalability. RGB imaging methods 

are more affordable but often produce moderate 

accuracy and lack optimization for embedded 

systems. Also, most previous works paid attention to 

accuracy rather than computation cost and energy 

efficiency, which is critically needed for real-time 

inspection. To fill this gap, we propose a lightweight 

CNN model for RGB-based fault detection and 

demonstrate its suitability for embedded deployment 

on the Jetson Nano. 

3. Materials and Methods  

      The suggested method for solar PV panel fault 

detection is presented in this section, involving 

dataset presentation, dataset pre-processing, the 

proposed model architecture, and model deployment 

on Jetson Nano, as presented in Figure 1. Notably, 

the implementation code and trained models used in 

this study are publicly available at 

https://github.com/renewable-research/solar-energy. 

3.1. Dataset Presentation 

      In the deep learning field, the quality of the 

dataset is an essential factor that affects the model 

https://github.com/renewable-research/solar-energy
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performance, including diversity, image resolution, 

standardization, and access availability for fair 

comparison with existing methods. To address these 

issues, the titled dataset ‘Faulty Solar Panel’ is 

utilized in this work, which is publicly available on 

the Kaggle platform [32] in 2023. 

Table 1. Summary of prior research on solar panel fault detection 

Authors Year Imaging 

Technique 

Method and 

Algorithm 

Dataset Classes Hardware 

Implementation 

Inference 

Speed 

Meng, et 

al. [20] 

2021 Electromagnetic CNN, YOLO, 

SVM 

User-collected Normal, defect RTX 2080 Ti 

GPU 

35 fps 

Wang et 

al. [22] 

2022 Electromagnetic Various 

CNNs 

Two public 

datasets 

Normal, Defective RTX 2080 

GPU 

N/A 

Boubaker 

et al. [15] 

2023 Thermal VGG16, 

K-NN, SVM 

User-collected Normal, Faulty, 

bypass diode 

failure, shading, 

short-circuit, and 

soiling 

N/A N/A 

Alatwi et 

al. [28] 

2024 RGB DenseNet169, 

SVM 

Solar Panel 

Dust Detection 

Clean, Dusty N/A N/A 

Ling et 

al. [14] 

2024 Thermal Edge 

detection, 

object 

detection, 

CNN 

BSDS500 Normal, Faulty RTX 2080 Ti 

GPU 

28 fps 

Araji et 

al. [27] 

2024 RGB CNN, U-Net User-collected clean, snow-

covered 

Google Colab 

and Kaggle 

N/A 

Pujara et 

al. [30] 

2024 RGB ML 

algorithms 

User-collected No fault, Partial 

shading, Soiling, 

Extreme soiling 

Arduino N/A 

Kayci et 

al. [31] 

2024 Thermal YOLOv3 User-collected Panel fault, Cell 

fault, Module fault 

Jetson TX2 N/A 

Awedat 

et al. [19] 

2025 Thermal Attention 

mechanism, 

U-Net 

User-collected single anomaly, 

multiple 

anomalies, 

contiguous 

anomalies 

N/A 2.8s 

Tella et 

al. [23] 

2025 Electromagnetic CNNs, Vision 

Transformer 

ELPV dataset non-defective, 

defective 

Multiple GPUs N/A 

Kilci et 

al. [24] 

2025 RGB Inceptionv3, 

SVM, logistic 

regression 

Faulty Solar 

Panel 

Bird-drop, Clean, 

Dusty, Electrical 

damage, Physical 

damage, and 

Snow-covered 

N/A N/A 

Kazemi 

et al. [25] 

2025 RGB VGG-16 Faulty Solar 

Panel 

Bird-drop, Clean, 

Dusty, Electrical 

damage, Physical 

damage, and 

Snow-covered 

N/A N/A 

Quiles-

Cucarella 

et al. [29] 

2025 RGB Machine 

learning 

User-collected Inverter failures, 

partial shading, 

and sensor faults 

N/A N/A 
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Figure 1. Overview of the proposed framework with end-to-end solar PV fault detection 

 

This dataset consists of a total of 885 images 

distributed into six distinct categories covering 

different surface conditions of solar panels. The 

classes of the dataset include bird-drop, clean, dusty, 

electrical damage, physical damage, and snow-

covered panels (see Table 2). Additionally, sample 

examples from the dataset are presented in Figure 2. 

These categories demonstrate the key environmental 

and mechanical problems with solar panels that 

directly impact performance. For example, dust and 

snow can minimize or prevent the absorption of 

sunlight, leading to a considerable decrease in 

energy yield. Bird droppings, which are acidic, can 

also damage the panel and make the surface darker. 

And also, the electrical parts of a solar panel might 

get damaged due to voltage fluctuations or lightning, 

while physical damage from wind or external factors 

can cause cracking or breaking of the panel surface. 

This variety and realism of the dataset guarantee that 

the trained model is exposed to diverse scenarios 

and realistic conditions and thus increases 

generalization.  

Table 2. A brief description of each class in the 

Faulty Solar Panel dataset 

Class Description 

Bird-drop Bird droppings are present 

on the solar panels 

 

Clean The solar panel is clean and 

free from dirt, dust, or any 

other damage 

 

Dusty A layer of dust covers the 

solar panel 

 

Electrical damage Solar panels with defects in 

electrical parts or 

connections 

 

Physical damage Solar panels showing signs 

of cracking or breakage 

 

Snow-covered Solar panels blanketed in 

snow 
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Figure 2. Representative samples of the Faulty Solar Panel dataset

3.2. Data Balancing and Preprocessing  

     The original “Faulty Solar Panel” dataset is 

imbalanced. Some categories in this dataset contain 

significantly fewer samples than others (see Table 

3). For example, the images in the physical damage 

and electrical damage classes are noticeably fewer 

than the images in the clean or bird-drop classes. 

This issue is called an imbalance in the dataset. The 

deep learning model may become biased toward the 

majority classes due to this imbalance. Hence, the 

model becomes less capable of accurately 

classifying minority categories. To solve this 

problem, we actually use oversampling and data 

augmentation methods. First, the dataset is split into 

training and testing data: 80% for training the model 

and 20% for testing. Then, the training set is 

balanced and then expanded using image 

augmentation techniques including horizontal 

flipping, rotation, brightness adjustment, blurring, 

and random cropping. Figure 3 presents some 

examples of image augmentation used in this work. 

As a result, the dataset is expanded more than 5 

times, from 885 original images to 4795 images. 

This step ensures that each category is fairly 

represented in the training phase. In addition to 

balancing, pre-processing of the images is performed 

to standardize the input before feeding it for training 

the model. All images are resized into some fixed 

dimension (e.g., 224×224×3) suitable for the input 

shape of the DL model. Thereafter, the intensity 

values of the images are adjusted and scaled to the 

same range from 0 to 1. This step is known as 

normalization. It makes the learning process easier 

for the model by removing unnecessary differences 

caused by lighting, resolution, or scaling. 
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Figure 3. Examples of image augmentation applied 

to training data 

Table 3. Image distribution per class 

Class Number of Images 

Bird-drop 192 

Clean 194 

Dusty 191 

Electrical damage 104 

Physical damage 70 

Snow-covered 124 

Total (original) 885 

Total (after augmentation) 4795 

 

3.3. Proposed Model Architecture 

     The method proposed for fault detection and 

classification in PV solar panels depends on the deep 

learning approach. The proposed model, seen in 

Figure 4, consists of a lightweight feature extraction 

network followed by fully connected layers that will 

be used for data classification. The goal behind this 

design is to produce an efficient model that can 

operate smoothly on resource-limited devices such 

as the Jetson Nano with minimum computational 

cost and at the same time retain high accuracy in 

fault identification. The MobileNetV2 architecture 

represents the core part of our model and acts as a 

backbone network for image feature extraction 

through the use of transfer learning techniques. This 

network is adapted for the fault classification in 

solar panels based on the utilized dataset by 

replacing the final classification layer, originally set 

for 1000 classes, with global average pooling to 

flatten the features, followed by the proposed 

classification network. The reason for choosing 

MobileNetV2 is its lightweight design and fast 

inference speed, which makes it appropriate for real-

time applications and embedded systems. This 

network extracts key visual elements from the input 

images, like patterns, textures, and shapes. The 

flatten operation is applied to convert the extracted 

features into a vector that summarizes the important 

information from the fed images. 

      Following feature extraction, the model involves 

a number of dense layers that carry out the 

classification task. A dropout layer is used between 

dense layers to stop the model from memorizing the 

training data and causing the overfitting problem. 

Dropout is considered a generalization technique. It 

forces the DL model to learn more general patterns 

rather than depending on specific details by 

arbitrarily ignoring some neurons during the training 

process. In order to help the model capture more 

complicated relationships between the input features 

and the output categories, nonlinearity is also 

introduced using the ReLU activation function. 

3.4. Model Deployment on Jetson Nano 

      After training the model on the collected dataset 

using a personal computer, we actually need to 

deploy it on an embedded platform to definitely 

check how it performs in real-time conditions with 

limited resources. For this purpose, the NVIDIA 

Jetson Nano is chosen as an embedded platform due 

to its low cost, low power consumption, compact 

portable design, and compatibility with edge AI 

applications. In this implementation, the trained fault 

detection model is exported and executed on the 

Jetson Nano board for running inference on unseen 

solar panel images belonging to the testing set. In 

this stage, the preprocessing steps described earlier 

are applied to the input images before passing them 

to the model. The Jetson Nano then performs 

forward propagation through the MobileNetV2 

backbone and classification layers for providing 

fault detection results in real time. The predictions 

are displayed on the terminal or saved for further 

analysis. 

        In a real-life application, the suggested model 

can be combined into an intelligent inspection 

framework for PV solar farms. Figure 5 illustrates a 
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practical example of employing the proposed 

method for a drone-based solar panel inspection. In 

this scenario, a drone with a camera and a Global 

Positioning System (GPS) receiver can 

automatically fly above the solar farm and take shots 

together with the geographic location coordinates of 

each panel. It then sends those images to the Jetson 

Nano which runs the introduced model to monitor or 

detect possible faults like dust accumulation, 

physical damage, electrical damage, and others in 

real-time. An alternative scenario, the Jetson Nano 

can be installed directly on the drone for enabling 

onboard processing without requiring image 

transmission, and also saving bandwidth and 

latency. The detection results with GPS data can be 

sent to a fault reporting or alert system for providing 

maintenance teams with the faulty panels and their 

precise locations. As a result, this combination of 

drones, GPS, and embedded systems can essentially 

reduce manual inspection costs and increase the 

efficiency of the solar power plants. However, in 

this study, the drone and GPS components shown in 

Figure 5 are presented as a part of the conceptual 

framework for real-world applications, not included 

in the current experimental setup. 

 

 

Figure 4. Architecture of the proposed classification model 

 
 

Figure 5. Illustrative example of deploying the proposed model in real-life applications 
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4. Experimental Results 

     This section presents a comprehensive analysis 

and evaluation of the proposed method, including 

implementation setup, training procedures, and 

performance comparison with related methods. Both 

qualitative examples and quantitative metrics are 

provided for validating the effectiveness of our 

approach. 

4.1. Implementation Details 

            The initial execution of all experiments for 

our work is performed using a laptop computer that 

has the following specifications: an NVIDIA RTX 

3060 GPU, an Intel Core i7 11th-gen CPU, and 16 

GB of RAM. After training the model and saving the 

model weights from the epoch with the highest 

testing accuracy, the model is deployed on the Jetson 

Nano device that is equipped with a 128-core 

Maxwell GPU, 4 GB RAM, and a Quad-core ARM 

Cortex-A57 CPU. This device works with 5 DC 

volts. Both the used laptop and the Jetson Nano are 

set up with the Linux operating system, CUDA 

Toolkit, Python, and PyTorch framework to enable 

GPU acceleration. Figure 6 illustrates the 

implementation of the proposed model in the Jetson 

Nano. 

 

Figure 6. Embedded implementation of the proposed 

method using Jetson Nano 

4.2. Training and Fine-tuning 

      The proposed model is trained utilizing the 

transfer learning technique based on the pre-trained 

weights of the MobileNetV2 architecture on the 

ImageNet dataset. Instead of keeping the 

MobileNetV2 part frozen like in many approaches, 

the entire model is trained at once by leaving the 

MobileNetV2 backbone unfrozen and fine-tuned 

together with the appended classifier. This end-to-

end training strategy enabled the gradients to be 

propagated through the entire network. As a result, 

the model can adapt its feature extraction ability to 

the solar panel dataset and improve the final 

classification accuracy. The model is trained for 30 

epochs, and the progress is assessed by tracking 

training and testing accuracy after each epoch, as 

shown in Figure 7. Additionally, Table 4 

summarizes the hyperparameters used for model 

training after tuning. 

Table 4. Hyperparameter configuration used in the 

proposed method 

Hyperparameter Configuration 

Batch size 32 

Training epochs 30 

Learning rate 0.0005 

Dropout ratio 0.5 

Size of hidden layers in the 

classifier 

512, 6 

Activation function ReLU 

Loss function Cross Entropy 

Optimizer SGD 

 

 

Figure 7. Training and testing the accuracy of the 

proposed model 

 

4.3. Performance Analysis and Comparisons 

      To select the best model in terms of accuracy 

and inference speed for deployment on the Jetson 

Nano, various well-known CNN architectures are 
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tested and evaluated, including GoogleNet, VGG19, 

ResNet18, SqueezeNet, AlexNet, ShuffleNet, 

XceptionNet, EfficientNet-B1, DenseNet121, and 

MobileNetV2. Table 5 reports the comparison of 

these models with respect to classification accuracy 

using different evaluation metrics, involving 

accuracy, recall, precision, and F1 score. In addition, 

Table 6 presents the comparison with respect to 

computational cost, involving the number of 

parameters, training time, and inference speed.    

 

Table 5. Accuracy analysis of the proposed method with different CNN architectures 

Model Accuracy Precision Recall F1-score 

GoogleNet 93.71 94.09 93.37 93.70 

VGG19 91.43 93.84 91.80 92.55 

AlexNet 88.00 89.17 89.50 89.09 

ResNet18  92.00 93.71 92.85 93.25 

DenseNet121 90.29 90.37 89.63 89.96 

EffeceintNet-B1 89.71 89.61 89.61 90.11 

ShuffleNet 69.14 73.71 69.14 69.15 

SqueezeNet 89.71 91.40 90.02 90.45 

Xception 88.57 91.26 88.76 89.78 

Frozen_MobileNetV2 90.29 91.44 91.97 91.60 

MobileNetV2 93.14 93.37 92.94 93.12 

 

Table 6. Computational cost analysis of the proposed method with different CNN architectures

Model Accuracy Precision Recall F1-score 

GoogleNet 93.71 94.09 93.37 93.70 

VGG19 91.43 93.84 91.80 92.55 

AlexNet 88.00 89.17 89.50 89.09 

ResNet18  92.00 93.71 92.85 93.25 

DenseNet121 90.29 90.37 89.63 89.96 

EffeceintNet-B1 89.71 89.61 89.61 90.11 

ShuffleNet 69.14 73.71 69.14 69.15 

SqueezeNet 89.71 91.40 90.02 90.45 

Xception 88.57 91.26 88.76 89.78 

Frozen_MobileNetV2 90.29 91.44 91.97 91.60 

MobileNetV2 93.14 93.37 92.94 93.12 

 

According to Table 5, GoogleNet achieved the 

highest accuracy (93.71%) among all tested 

networks, followed closely by the proposed end-to-

end trained MobileNetV2 (93.14%). The 

performance gap is minor (<0.6%). This indicates 

that both models are effective at extracting features 

related to solar panel fault detection. Particularly, the 

MobileNetV2 attains this result with far fewer 
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parameters and less implication time associated to 

GoogleNet, see the Table 6. When comparing the 

end-to-end trained network against its version of 

frozen backbone, a pure development is observed, 

and the accuracy growths from 90.29% to 93.14%, 

and the F1-score increases from 91.6% to 93.12%. 

This development guarantees the importance of 

letting the backbone adapt its feature extraction 

capabilities to the solar panel dataset, instead of 

depending solely on pre-trained ImageNet 

representations. It is worth observing that this 

improvement in accuracy does not need any 

additional cost of computation at the stage of 

inference (check Table 6). When comparing a big 

and hard-working model like the DenseNet121 with 

lightweight models like MobileNetV2, the small 

model performs better. From our point of view, this 

is due to the nature of the solar panel image, which 

offers a simple texture, limited color differences, and 

a shape with static properties. So, these 

characteristics do not require a complex architecture 

like in DenseNet121, and this complexity can reduce 

performance.   

       Based on Table 6, the computational results 

show the trade-off between accuracy and efficiency 

(i.e., computational cost). While models such as 

VGG19 and Xception achieved competitive 

accuracy, they required large numbers of parameters 

(20M and 21.8M, respectively) and performed slow 

inference speeds on the Jetson Nano (294.6 ms and 

201.8 ms, respectively). These delays make them 

impractical for real-time deployment on limited-

resource devices. On the other hand, the 

MobileNetV2 achieved one of the best trade-offs 

using only 2.8M parameters and keeping an 

inference speed of 44.4 ms on Jetson Nano, and still 

achieving >93% accuracy. By comparison, 

GoogleNet (65.3 ms) is slower and heavier (6.1M 

parameters), whereas SqueezeNet is extremely 

lightweight (0.9M parameters, 24.6 ms inference 

time) but reduces accuracy (89.71%). Therefore, 

MobileNetV2 offers an optimal balance between 

accuracy and efficiency, which makes it the most 

suitable model for deployment on the Jetson Nano. 

       The per-class performance of the proposed 

model is also considered to identify strengths and 

limitations as presented in Table 7. Furthermore, to 

assess the effectiveness of the proposed model 

against existing approaches, various related works 

[24-26, 33-36] that used the same dataset in our 

work (e.g., the Faulty Solar Panel dataset) are 

selected for comparison. The comparative results are 

presented in Table 8.  

Table 7. Accuracy analysis across each class of the 

proposed model 

Class Precision Recall F1-score 

Bird-drop 90 92 91 

Clean 97 97 97 

Dusty 89 87 88 

Electrical damage 95 95 95 

Physical damage 92 86 |89 

Snow-covered 96 100 98 

 

      The comprehensive class-wise evaluation in 

Table 7 demonstrates that the suggested model 

consistently performs well across various fault 

categories in terms of per-class performance. The 

model achieved almost perfect detection in classes 

like clean (precision, recall, and F1-score: 97%) and 

snow-covered (precision 96%, recall 100%, F1-score 

98%). Similarly, electrical damage is identified quite 

well with balanced precision and recall for both at 

95%. More difficult cases are dusty (precision 89%, 

recall 87%, F1-score 88%) and physical damage 

(precision 92%, recall 86%, F1-score 89%). We 

observe that the visual similarities between dust 

accumulation and other surface irregularities may 

occasionally confuse the model. Nevertheless, the 

overall per-class results prove the robustness of the 

proposed method in handling both common and rare 

classes. 

        Table 8 shows that the proposed method 

outperforms all previous baseline models with an 

accuracy of 93.1% and an F1-score of 93.1%. This is 

about a 2% upgrading from the previous method in 

work ([26], which obtained an accuracy 91.4%. 

Other works, like [33, 34, 36], obtained accuracies 

below 88%, once more emphasizing the efficiency 

of the proposed fine-tuned MobileNetV2 method. 

Particularly, the methods in works [24] and [25] are 

significantly lower accuracies 75% and 83.9%, 

respectively. The consistent advantage across 

accuracy, precision, recall, and F1 demonstrates that 

the proposed model not only generalizes better but 

also ensures reliable deployment in real-world solar 
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panel inspection situations. Overall, the results 

presented in this section demonstrate that the 

proposed approach offers a relatively good balance 

between accuracy and efficiency, which makes it 

highly feasible for embedded devices like the Jetson 

Nano.  
 

Table 8. Performance comparison with existing works

Method      Year Accuracy Precision Recall F1-

score 

Akinca et al. [33] 2024 87.5 87.9 88.7 88.1 

Nunes et al. [34] 2024 87.6 - - 88.0 

Ghahremani et al. [35] 2024 - 89.7 87.7 90.0 

Ledmaoui et al. [26] 2024 91.4 - - 91.6 

Kazemi et al. [25] 2025 75.0 - - - 

Kilci et al. [24] 2025 83.9 84.0 83.9 83.9 

Gasparyan et al. [36] 2025 87.4 - - 85.8 

Proposed 2025 93.1 93.3 92.9 93.1 

 

5. Limitations and Future Work 

     Despite the effective presentation of the proposed 

method, some challenges remained. First, the current 

study depends on only the RGB imaging technique, 

which may limit the detection process of micro-

cracks or internal cell defects that could better 

identified by thermal or electroluminescence 

imaging. Second, the model was evaluated on a 

publicly available dataset, and real-world 

deployment in large-scale solar farms may encounter 

variations in lighting, weather, and panel orientation 

that could affect accuracy. Third, although the Jetson 

Nano succeeded in providing real-time inference for 

single images, processing a large number of images 

continuously or integrating with multiple drones 

may require further optimization or more powerful 

embedded platforms. Additionally, certain 

categories, such as dusty and physical damage, 

indicated relatively lower recall values due to visual 

similarities with other classes. Future research will 

focus on incorporating advanced data augmentation, 

attention mechanisms, in addition to multimodal 

inputs (e.g., thermal or electromagnetic signal) to 

further improve classification robustness. 

Furthermore, extending the framework to drone-

based or IoT-based inspection systems can allow 

fully autonomous solar farm monitoring at large 

scales. 

 6. Conclusion 

     This study presented an artificial intelligence-

based method to detect faults in solar PV panels 

utilizing a lightweight deep learning model and 

embedded platform deployment. For training and 

testing the proposed model, we used a publicly 

available dataset that consists of six different 

conditions of solar panels. Data balancing with 

augmentation strategies is applied to handle class 

imbalance and improve generalization. Our network 

is an adapted version of the MobileNetV2 

architecture and trained in an end-to-end fashion to 

fully utilize transfer learning and achieve optimal 

feature extraction for solar panel images. Extensive 

experiments are conducted to compare the proposed 

model with state-of-the-art CNN architectures, 

including GoogleNet, VGG19, ResNet18, 

DenseNet121, EfficientNet-B1, and others. The 

experiments showed that the fine-tuned 

MobileNetV2 achieved an excellent balance 

between accuracy and efficiency, with a 

classification accuracy of 93.1%, a recall of 92.94%, 

a precision of 93.37%, and an F1-score of 93.1%. It 

outperforms many well-known CNNs and surpasses 

recent related works on the same dataset. 

Importantly, when deployed on the resource-

constrained Jetson Nano, the model maintained real-

time performance with an average inference speed of 

44.4 ms per image and a model size of 2.8M 

parameters. The obtained results confirm the 

suitability of the proposed method for embedded 
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applications in solar panel inspection and reveal its 

practical value for smart and cost-effective 

monitoring of PV solar farms. By enabling real-time 

fault detection without reliance on cloud networks, 

the system supports scalable, on-site, and energy-

efficient inspection. Such a solution has the potential 

to reduce maintenance costs, minimize downtime, 

and ultimately enhance the efficiency and reliability 

of solar energy production.  

Nomenclature  

 AI Artificial Intelligence 

ANN Artificial Neural Network 

ASPP Atrous Spatial Pyramid Pooling 

BSDS 
Berkeley Segmentation Dataset and 

Benchmark 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DL Deep Learning 

EL Electroluminescence 

ELPV Electroluminescence Photovoltaic 

fps Frame per Second 

GB Gigabyte 

GPS Global Positioning System 

GPU Graphics Processing Unit 

IEA International Energy Agency 

IoT Internet of Things 

IoU Intersection over Union 

IR Infrared Cameras 

K-NN K-Nearest Neighbours 

LPPT Limited Power Point Tracking 

MPPT Maximum Power Point Tracking 

ms Millisecond 

PC Personal Computer 

PL Photoluminescence 

PV photovoltaic 

RAM 
 

ReLU 

Random Access Memory 
 

Rectified Linear Unit 

RGB Red Green Blue 

RTX Ray Tracing Texel eXtreme 

s Second 

SD Secure Digital 

SGD Stochastic Gradient Descent 

SVM Support Vector Machine 

Ti Titanium 

ViT Vision Transformer 

YOLO You Only Look Once 
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