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Solar energy is a sustainable and renewable resource that plays a vital role in
mitigating climate change by reducing greenhouse gas emissions. However, its
efficiency can be compromised by different operational faults such as dust
accumulation, surface cracks, or electrical failures. Detecting these issues early is
necessary to maintain optimum performance and avoid costly system failures. In this
study, we propose an Al-based approach for automated fault detection in solar panels,
built on a lightweight deep learning model adapted from the MobileNetV2
architecture. The model is trained and validated on a publicly available dataset with
data balancing and augmentation to improve classification accuracy across different
fault categories. To assess practical feasibility, we deployed the system on an
embedded Jetson Nano platform. Extensive results and comparisons demonstrate the
superior performance of the proposed method, achieving an accuracy of 93.14% and
an F1-score of 93.12%, while maintaining a low model size (2.8M parameters) and an
inference speed of 44.4 ms per image on the Jetson Nano, which is fast enough to
meet real-time inspection requirements in embedded devices. Overall, the findings
indicate that our solution provides an effective framework for on-site solar panel
monitoring and maintenance without the need for cloud resources.

1. Introduction

strategies  that  balance  resource  saving,
environmental protection, and economic growth

Government policy and rising public demand to
reduce dependence on fossil fuels and speed up the
adoption of renewable and carbon-free resources are
driving a main transformation in the global energy
space. This shift requires well-structured energy

particularly in emerging countries [1, 2]. Without
such measures, achieving sustainable development
will remain difficult. Solar and wind are projected to
make the highest contributions to global renewable
growth, according to the International Energy
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Agency (IEA) [3]. Nonetheless, solar and wind
reliability depend on the effectiveness of the
maintenance of frameworks that ensure reliable
energy generation. Solar energy, which is the
production of electricity from sunlight based on the
panels of photovoltaic (PV), offers important
benefits with economic stats and remains highly
accessible because of its worldwide availability and
the growing request for electricity power. A main
challenge lies in the common neglect of power plant
monitoring and maintenance [4]. Monitoring is
critical to the systems properties (guarantee the
performance, safety, and cost-effectiveness). While
fossil fuel plants need to review boilers and turbines,
operators must continually monitor performance.
The installations of solar power face challenges like
dusting, shading, cracks, and other damage on the
surface, which can meaningfully reduce the
efficiency of energy if left unrestricted. In addition,
in order to decrease output energy, deserting these
issues leads to shorter asset lifespans and higher
costs. Preventive and condition-based maintenance
are preferred, as they lessen downtime and
maximize the yield of energy [5].

Field inspections are often costly, need a
long time, and are dependent on the subjective
judgment and limited technicians expertise [6]. As
an alternative way, automated methods of inspection
have been established by using Atrtificial
Intelligence ~ (Al)  methods,  which  have
fundamentally transformed the situation in terms of
how are monitored and maintained the power plants.
In the sector of solar, Al techniques combined with
computer vision and image processing are applied to
detect various environmental and technical issues in
the panels [7]. Deep learning networks, particularly
Convolutional Neural Networks (CNNs), are a
popular choice to analyze images of PV modules for
enabling accurate and automated fault detection.
Different architectures of CNN have been created
(e.g., GoogleNet, AlexNet, DenseNet, etc.) to
address key aspects such as accuracy and
computational cost [8]. These deep networks learn
the classification tasks through training on a specific
dataset given with respect to the application domain.
In case of limited labeled data, transfer learning can
be used to take advantage of pre-trained models on
large-scale datasets and adapt them to the solar fault
detection task. This manner reduces the need for a
broad annotated dataset in addition to speeding up
the training process and increasing generalization

[9].
In recent years, embedded systems and CNN-
based inspections through drones have dramatically
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enhanced efficiency as well as real-time fault
diagnosis. Embedded systems provide local
processing and low-power consumption without the
need for cloud resources [10]. This offers earlier
decision-making, lower latency, and reduced costs
for data transmission, which are important for solar
with large-scale the farms of solar. On the other
hand, drones can provide a flexible and a coverage
of wide-area by taking photos with high-resolution
in places that are difficult or dangerous to reach for
inspectors [11]. These technologies, composed with
Al-based ones, constitute a robust platform for
scalable, cost-effective, and reliable monitoring for
solar panels.

Research is presence led for solar fault
detection by using techniques with different
imaging, including thermal, electromagnetic, and
RGB imaging. Images in thermal are recorded by
Infrared Cameras (IR) to recognize hotspots and
abnormal heating shapes in PV  modules.
Electromagnetic imaging, like Electroluminescence
(EL) and Photoluminescence (PL), takes fine-
grained cell-level defects as micro-cracks and
slothful areas, and flow conditions under a
controlled environment. In contrast, RGB (visible
spectrum) imaging employs regular color cameras
for detecting the issues of surface-level like cracks,
dust, and shading. The advantage of RGB imaging
lies in its low cost, easy accessibility, and suitability
for outdoor scenarios and large-scale applications,
while other modalities are costly or need unusual
equipment [12, 13].

Dissimilar previous studies in PV fault
detection that typically emphasize high-complexity
CNN models or rely on expensive imaging methods,
our work focuses on RGB imaging in order to
present a lightweight and computationally efficient
deep learning method specifically tailored for real-
time fault detection on embedded devices. The
mixing of MobileNetV2 with optimized data
augmentation, balanced dataset training, and
placement on the Jetson Nano demonstrates a
practical framework for on-site solar panel
monitoring without depending on cloud resources.
The key contributions of this work are summarized
in the following points:

1- Developing an efficient solar fault detection
approach utilizing a lightweight deep
learning model tailored for PV panel
inspection.

2- Real-time deployment of the proposed
model on the Jetson Nano to ensure
suitability for embedded and resource-
constrained environments.
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3- Comprehensive analysis of different deep
learning architectures to identify the best

trade-off between accuracy and
computational cost for practical
deployment.

2. Related Work

The field of solar fault detection has been widely
investigated using the application of image
processing and deep learning methods. A review of
the existing literature shows that these approaches
can be divided into three main categories based on
their imaging modality, including thermal imaging,
electromagnetic imaging, and RGB (i.e., visible
spectrum) imaging technology [12]. Focusing on
thermal imaging, H. Ling et al. [14] introduced a
new method named deep edge-based fault detection
for solar panel fault detection using deep learning
and infrared (IR) images, assuming that the image is
captured by a drone. The authors used a CNN
architecture for a two-stage process: first for edge
detection and then for object detection to identify
faults. The suggested method classifies solar panels
into two classes: either "normal” or "faulty". They
used a dataset of 2060 images and achieved a high
F1 score. Furthermore, the model is tested on an
RTX 2080 Ti GPU on PC and achieved a frame rate
of 28 fps. S. Boubaker et al. [15] investigated both
machine learning and deep learning techniques for
fault detection and diagnosis of PV modules using
infrared thermography images. The authors formed
two sub-datasets, one for binary classification
(normal and faulty) and the second for multi-class
classification contains four types of fault (bypass
diode failure, soiling, short-circuit, and shading).
Experimental results offered that models of deep
learning outperform machine learning methods in
both binary and multi-class classification with an
accuracy of 98.71%. Likewise, other works [16-18]
applied several CNNs and texture-based features
from thermal images for detecting the cracks and
hotspots, ensuring that deep learning methods
provide higher performance under different
situations. K. Awedat et al. [19] offered an enhanced
deep learning technique for fault detection in
photovoltaic (PV) panels by using thermal images.
The authors enhance the U-Net architecture by
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including Residual Blocks, Atrous Spatial Pyramid
Pooling (ASPP), and Attention Mechanisms to
strengthen feature extraction, contextual
understanding, and accurate fault localization. This
method attained over 29% higher F1-score and 62%
better Intersection over Union (loU) than the
standard U-Net, while reducing the losing of
segmentation by 71%. These enhancements
meaningfully outperform other benchmarks like U-
Net with ASPP and DeepLabV3+, which proves
strong robustness to environmental noise and
thermal variability.

Based on electromagnetic imaging, Z. Meng et
al. [20] presented a defect object detection method
using electroluminescence images based on a DL
approach. They introduced the YOLO-PV algorithm
to detect defects in PV modules by modifying the
original version of YOLOv4 for object detection.
The method was validated on the EL image dataset
and achieved 94.5% average precision and 35 fps as
inference speed on RTX 2080 Ti. Similarly, the
authors in [21] introduced a comparative study of an
improved YOLOvV5 and YOLOv8 for PV defect
identification on EL images. The study is evaluated
on the ELDDS1400C5 dataset and obtained
MAP@0.5 of 76.3% using the improved YOLOV5
and improved to 77.7% using YOLOvVS8. Another
study [22] focused on CNN feature fusion using the
ResNet152 and Xception networks to detect faults in
EL imaging. Additionally, the fusion model
combined with an attention mechanism achieves
96.17% accuracy for binary classification and
92.13% for multi-class defect detection on public EL
datasets. H. Tella et al. [23] investigated a defect
detection method in solar photovoltaic (PV) cells
using drone-captured electroluminescence (EL)
images through an ensemble-based deep learning
framework. Eight advanced architectures namely
AlexNet, SENet, GoogleNet, Xception, ViT,
DarkNet53, ResNetl8, and SqueezeNet, were
refined on the ELPV dataset (2,624 samples). The
ensemble methods (voting and bagging) achieved
accuracies of 68.36% and 68.31%, respectively,
outperforming the previous hybrid model (61.15%).
Notably, ResNet18 reached 73.02% accuracy in
binary classification.
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Utilizing the RGB imaging, O. Kilci et al. [24]
proposed a fault detection method by integrating
deep learning with machine learning approaches.
The pre-trained Inceptionv3 was used as a feature
extraction network, while the three types of machine
learning  classifiers were used for image
classification including logistic regression, ANN,
and SVM. The highest accuracy obtained was 83.9%
using the Faulty Solar Panel Dataset. By using a
similar dataset in earlier work [24], the authors in
[25] presented a federated transfer learning
framework by using a pre-trained VGG-16 model to
categorize six solar panel types of faults. The model
realized 74% testing correctness with federated
learning and 75% with centralized learning.
Likewise, the study in [26] presented an explainable
Al model for detecting anomalies in solar
photovoltaic panels by using an improvement for
CNN based on the VGG16 architecture. The model
was integrated with a PyQt5-based user-interface to
deliver an environment with user-friendly type in
order to support decision-making. The model
achieved 91.46% accuracy on the Faulty Solar Panel
Dataset. Concentrating on snow coverage, the work
[27] talked about the impact of snow accumulation
on PV panels by developing a deep learning
detection model. The model includes a CNN for
feature extraction and a U-Net for determining the
areas which covered by snow. Additional study [28]
addressed the influence of the accumulation of dust
on solar panels based on a grouping of deep learning
and machine learning. The DenseNet169 was used
for feature extraction, while the SVM was used for
the classification process. In [29], E. Quiles-
Cucarella et al. introduced fault diagnosis in
photovoltaic (PV) systems using multiple machine
learning models on a large-scale dataset from a
laboratory PV system involving seven fault types
(inverter failures, partial shading, sensor faults, etc.).
Models were evaluated under Maximum Power
Point Tracking (MPPT) and Limited Power Point
Tracking (LPPT) conditions. Results indicate that
the ensemble bagged tree classifier achieved the
highest overall accuracy (92.2%), while neural
networks performed better under MPPT.

Recent works have also investigated the use of
embedded devices for providing real-time and
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energy-efficient deployment to various systems of
solar monitoring. D. Pujara et al. [30] explored real-
time monitoring and control of PV panels by using
an intelligent monitoring and control device. The
system employed embedded machine learning to
classify four conditions, including soiling, partial
shading, extreme soiling, and standard test
conditions. An Arduino-based transmitter and
receiver with a data transceiver for communication
were used as the edge device. In [31], a panel fault
in photovoltaic systems using thermal images is
proposed. A drone equipped with a thermal camera
was deployed to capture images of rooftop solar
panels, which were recorded on an onboard SD card
during flight. These recorded images were later
uploaded to the Jetson TX2 embedded Al device,
where a YOLOv3-based convolutional neural
network was trained and used for fault detection
involving three types: cell fault, module fault, and
panel fault. The main outcomes of the methods
described above are summarized in Table 1.
Research gap: Despite significant progress in solar
panel fault detection, some challenges remain. Many
earlier introduced methods depend on expensive
thermal or electromagnetic imaging techniques,
which limit their scalability. RGB imaging methods
are more affordable but often produce moderate
accuracy and lack optimization for embedded
systems. Also, most previous works paid attention to
accuracy rather than computation cost and energy
efficiency, which is critically needed for real-time
inspection. To fill this gap, we propose a lightweight
CNN model for RGB-based fault detection and
demonstrate its suitability for embedded deployment
on the Jetson Nano.

3. Materials and Methods

The suggested method for solar PV panel fault
detection is presented in this section, involving
dataset presentation, dataset pre-processing, the
proposed model architecture, and model deployment
on Jetson Nano, as presented in Figure 1. Notably,
the implementation code and trained models used in
this  study are  publicly available at
https://github.com/renewable-research/solar-energy.

3.1. Dataset Presentation

In the deep learning field, the quality of the
dataset is an essential factor that affects the model
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performance, including diversity, image resolution,
standardization, and access availability for fair

issues, the titled dataset ‘Faulty Solar Panel’ is
utilized in this work, which is publicly available on

comparison with existing methods. To address these

the Kaggle platform [32] in 2023.

Table 1. Summary of prior research on solar panel fault detection

Authors  Year Imaging Method and Dataset Classes Hardware Inference
Technique Algorithm Implementation Speed
Meng, et 2021 Electromagnetic CNN, YOLO, User-collected Normal, defect RTX 2080 Ti 35 fps
al. [20] SVM GPU
Wanget 2022 Electromagnetic Various Two public Normal, Defective RTX 2080 N/A
al. [22] CNNs datasets GPU
Boubaker 2023 Thermal VGG16, User-collected Normal, Faulty, N/A N/A
etal. [15] K-NN, SVM bypass diode
failure, shading,
short-circuit, and
soiling
Alatwi et 2024 RGB DenseNet169, Solar Panel Clean, Dusty N/A N/A
al. [28] SVM Dust Detection
Linget 2024 Thermal Edge BSDS500 Normal, Faulty RTX 2080 Ti 28 fps
al. [14] detection, GPU
object
detection,
CNN
Arajiet 2024 RGB CNN, U-Net  User-collected clean, snow- Google Colab N/A
al. [27] covered and Kaggle
Pujaraet 2024 RGB ML User-collected No fault, Partial Arduino N/A
al. [30] algorithms shading, Soiling,
Extreme soiling
Kayciet 2024 Thermal YOLOv3 User-collected Panel fault, Cell Jetson TX2 N/A
al. [31] fault, Module fault
Awedat 2025 Thermal Attention User-collected single anomaly, N/A 2.8s
etal. [19] mechanism, multiple
U-Net anomalies,
contiguous
anomalies
Tella et 2025 Electromagnetic CNNs, Vision  ELPV dataset non-defective, Multiple GPUs N/A
al. [23] Transformer defective
Kilciet 2025 RGB Inceptionv3, Faulty Solar Bird-drop, Clean, N/A N/A
al. [24] SVM, logistic Panel Dusty, Electrical
regression damage, Physical
damage, and
Snow-covered
Kazemi 2025 RGB VGG-16 Faulty Solar Bird-drop, Clean, N/A N/A
et al. [25] Panel Dusty, Electrical
damage, Physical
damage, and
Snow-covered
Quiles- 2025 RGB Machine User-collected Inverter failures, N/A N/A
Cucarella learning partial shading,
et al. [29] and sensor faults
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Figure 1. Overview of the proposed framework with end-to-end solar PV fault detection

This dataset consists of a total of 885 images
distributed into six distinct categories covering
different surface conditions of solar panels. The
classes of the dataset include bird-drop, clean, dusty,
electrical damage, physical damage, and show-
covered panels (see Table 2). Additionally, sample
examples from the dataset are presented in Figure 2.
These categories demonstrate the key environmental
and mechanical problems with solar panels that
directly impact performance. For example, dust and
snow can minimize or prevent the absorption of
sunlight, leading to a considerable decrease in
energy Yield. Bird droppings, which are acidic, can
also damage the panel and make the surface darker.
And also, the electrical parts of a solar panel might
get damaged due to voltage fluctuations or lightning,
while physical damage from wind or external factors
can cause cracking or breaking of the panel surface.
This variety and realism of the dataset guarantee that
the trained model is exposed to diverse scenarios
and realistic conditions and thus increases
generalization.
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Table 2. A brief description of each class in the
Faulty Solar Panel dataset

Class

Description

Bird-drop

Clean

Dusty

Electrical damage

Physical damage

Snow-covered

Bird droppings are present
on the solar panels

The solar panel is clean and
free from dirt, dust, or any
other damage

A layer of dust covers the
solar panel

Solar panels with defects in
electrical parts or
connections

Solar panels showing signs
of cracking or breakage

Solar panels blanketed in
snow
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Physical damage Electrical damage

Physical damage Bird-drop Electrical damage

Figure 2. Representative samples of the Faulty Solar Panel dataset

3.2. Data Balancing and Preprocessing flipping, rotation, brightness adjustment, blurring,
and random cropping. Figure 3 presents some
The original “Faulty Solar Panel” dataset is examples of image augmentation used in this work.
imbalanced. Some categories in this dataset contain As a result, the dataset is expanded more than 5
significantly fewer samples than others (see Table times, from 885 original images to 4795 images.
3). For example, the images in the physical damage This step ensures that each category is fairly
and electrical damage classes are noticeably fewer represented in the training phase. In addition to
than the images in the clean or bird-drop classes. balancing, pre-processing of the images is performed
This issue is called an imbalance in the dataset. The to standardize the input before feeding it for training
deep learning model may become biased toward the the model. All images are resized into some fixed
majority classes due to this imbalance. Hence, the dimension (e.g., 224x224x3) suitable for the input
model becomes less capable of accurately shape of the DL model. Thereafter, the intensity
classifying minority categories. To solve this values of the images are adjusted and scaled to the
problem, we actually use oversampling and data same range from 0 to 1. This step is known as
augmentation methods. First, the dataset is split into normalization. It makes the learning process easier
training and testing data: 80% for training the model for the model by removing unnecessary differences
and 20% for testing. Then, the training set is caused by lighting, resolution, or scaling.

balanced and then expanded using image
augmentation  techniques including horizontal
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Zoom 30%

Horizontal Flip Gaussian Filter

Figure 3. Examples of image augmentation applied
to training data

Table 3. Image distribution per class

Class Number of Images
Bird-drop 192

Clean 194

Dusty 191
Electrical damage 104
Physical damage 70
Snow-covered 124

Total (original) 885

Total (after augmentation) 4795

3.3. Proposed Model Architecture

The method proposed for fault detection and
classification in PV solar panels depends on the deep
learning approach. The proposed model, seen in
Figure 4, consists of a lightweight feature extraction
network followed by fully connected layers that will
be used for data classification. The goal behind this
design is to produce an efficient model that can
operate smoothly on resource-limited devices such
as the Jetson Nano with minimum computational
cost and at the same time retain high accuracy in
fault identification. The MobileNetV2 architecture
represents the core part of our model and acts as a
backbone network for image feature extraction
through the use of transfer learning techniques. This
network is adapted for the fault classification in
solar panels based on the utilized dataset by
replacing the final classification layer, originally set
for 1000 classes, with global average pooling to
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flatten the features, followed by the proposed
classification network. The reason for choosing
MobileNetV2 is its lightweight design and fast
inference speed, which makes it appropriate for real-
time applications and embedded systems. This
network extracts key visual elements from the input
images, like patterns, textures, and shapes. The
flatten operation is applied to convert the extracted
features into a vector that summarizes the important
information from the fed images.

Following feature extraction, the model involves
a number of dense layers that carry out the
classification task. A dropout layer is used between
dense layers to stop the model from memorizing the
training data and causing the overfitting problem.
Dropout is considered a generalization technique. It
forces the DL model to learn more general patterns
rather than depending on specific details by
arbitrarily ignoring some neurons during the training
process. In order to help the model capture more
complicated relationships between the input features
and the output categories, nonlinearity is also
introduced using the ReL U activation function.

3.4. Model Deployment on Jetson Nano

After training the model on the collected dataset
using a personal computer, we actually need to
deploy it on an embedded platform to definitely
check how it performs in real-time conditions with
limited resources. For this purpose, the NVIDIA
Jetson Nano is chosen as an embedded platform due
to its low cost, low power consumption, compact
portable design, and compatibility with edge Al
applications. In this implementation, the trained fault
detection model is exported and executed on the
Jetson Nano board for running inference on unseen
solar panel images belonging to the testing set. In
this stage, the preprocessing steps described earlier
are applied to the input images before passing them
to the model. The Jetson Nano then performs
forward propagation through the MobileNetV2
backbone and classification layers for providing
fault detection results in real time. The predictions
are displayed on the terminal or saved for further
analysis.

In a real-life application, the suggested model
can be combined into an intelligent inspection
framework for PV solar farms. Figure 5 illustrates a
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practical example of employing the proposed
method for a drone-based solar panel inspection. In
this scenario, a drone with a camera and a Global
Positioning  System  (GPS)  receiver  can
automatically fly above the solar farm and take shots
together with the geographic location coordinates of
each panel. It then sends those images to the Jetson
Nano which runs the introduced model to monitor or
detect possible faults like dust accumulation,
physical damage, electrical damage, and others in
real-time. An alternative scenario, the Jetson Nano
can be installed directly on the drone for enabling
onboard processing without requiring image

transmission, and also saving bandwidth and
latency. The detection results with GPS data can be
sent to a fault reporting or alert system for providing
maintenance teams with the faulty panels and their
precise locations. As a result, this combination of
drones, GPS, and embedded systems can essentially
reduce manual inspection costs and increase the
efficiency of the solar power plants. However, in
this study, the drone and GPS components shown in
Figure 5 are presented as a part of the conceptual
framework for real-world applications, not included
in the current experimental setup.

n=32 n=96
Bird-drop
Clean
. Dusty
Electrical damage
Physical damage
224x224x3 224x224 112x112 56x56 Snow-covered
— —_— Fully connected
\\ Preprocessing 3X3 Conv, RelLU Max pool 2X2 ) .\ )
MobileNet Classifier

Figure 4. Architecture of the proposed classification model

Drone with GPS Receiver

fﬂ

Image and
Locatlon

letson Nano Board

Fault Reporting/
Alert System

Fault Detection
Results

PV Panels Deep Learning Model

Figure 5. Illustrative example of deploying the proposed model in real-life applications
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4. Experimental Results

This section presents a comprehensive analysis
and evaluation of the proposed method, including
implementation setup, training procedures, and
performance comparison with related methods. Both
qualitative examples and quantitative metrics are
provided for validating the effectiveness of our
approach.

4.1. Implementation Details

The initial execution of all experiments for
our work is performed using a laptop computer that
has the following specifications: an NVIDIA RTX
3060 GPU, an Intel Core i7 11th-gen CPU, and 16
GB of RAM. After training the model and saving the
model weights from the epoch with the highest
testing accuracy, the model is deployed on the Jetson
Nano device that is equipped with a 128-core
Maxwell GPU, 4 GB RAM, and a Quad-core ARM
Cortex-A57 CPU. This device works with 5 DC
volts. Both the used laptop and the Jetson Nano are
set up with the Linux operating system, CUDA
Toolkit, Python, and PyTorch framework to enable
GPU acceleration. Figure 6 illustrates the
implementation of the proposed model in the Jetson
Nano.

a
L]
L
]
e
B
L

Figure 6. Embedded implementation of the proposed
method using Jetson Nano

4.2. Training and Fine-tuning

The proposed model is trained utilizing the
transfer learning technique based on the pre-trained
weights of the MobileNetV2 architecture on the
ImageNet dataset. Instead of keeping the
MobileNetV2 part frozen like in many approaches,

the entire model is trained at once by leaving the
MobileNetVV2 backbone unfrozen and fine-tuned
together with the appended classifier. This end-to-
end training strategy enabled the gradients to be
propagated through the entire network. As a result,
the model can adapt its feature extraction ability to
the solar panel dataset and improve the final
classification accuracy. The model is trained for 30
epochs, and the progress is assessed by tracking
training and testing accuracy after each epoch, as
shown in Figure 7. Additionally, Table 4
summarizes the hyperparameters used for model
training after tuning.

Table 4. Hyperparameter configuration used in the
proposed method

Hyperparameter Configuration
Batch size 32
Training epochs 30
Learning rate 0.0005
Dropout ratio 0.5

Size of hidden layers in the 512, 6
classifier

Activation function ReLU

Loss function Cross Entropy

Optimizer SGD

100%
90% f

Accuracy (%)

—&— Train Accuracy
Test Accuracy

0 5 10 15 0 5 o
Number of Epoch

Figure 7. Training and testing the accuracy of the
proposed model

4.3. Performance Analysis and Comparisons

To select the best model in terms of accuracy
and inference speed for deployment on the Jetson
Nano, various well-known CNN architectures are
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tested and evaluated, including GoogleNet, VGG19,
ResNet18, SqueezeNet, AlexNet, ShuffleNet,
XceptionNet, EfficientNet-B1, DenseNet121, and
MobileNetV2. Table 5 reports the comparison of
these models with respect to classification accuracy

using different evaluation metrics, involving
accuracy, recall, precision, and F1 score. In addition,
Table 6 presents the comparison with respect to
computational cost, involving the number of
parameters, training time, and inference speed.

Table 5. Accuracy analysis of the proposed method with different CNN architectures

Model Accuracy Precision Recall F1-score
GoogleNet 93.71 94.09 93.37 93.70
VGG19 91.43 93.84 91.80 92.55
AlexNet 88.00 89.17 89.50 89.09
ResNet18 92.00 93.71 92.85 93.25
DenseNet121 90.29 90.37 89.63 89.96
EffeceintNet-B1 89.71 89.61 89.61 90.11
ShuffleNet 69.14 73.71 69.14 69.15
SqueezeNet 89.71 91.40 90.02 90.45
Xception 88.57 91.26 88.76 89.78
Frozen_MobileNetV2 90.29 91.44 91.97 91.60
MobileNetV2 93.14 93.37 92.94 93.12

Table 6. Computational cost analysis of the proposed method with different CNN architectures

Model Accuracy Precision Recall F1-score
GoogleNet 93.71 94.09 93.37 93.70
VGG19 91.43 93.84 91.80 92.55
AlexNet 88.00 89.17 89.50 89.09
ResNet18 92.00 93.71 92.85 93.25
DenseNet121 90.29 90.37 89.63 89.96
EffeceintNet-B1 89.71 89.61 89.61 90.11
ShuffleNet 69.14 73.71 69.14 69.15
SqueezeNet 89.71 91.40 90.02 90.45
Xception 88.57 91.26 88.76 89.78
Frozen_MobileNetV2 90.29 91.44 91.97 91.60
MobileNetV2 93.14 93.37 92.94 93.12

According to Table 5, GoogleNet achieved the
highest accuracy (93.71%) among all tested
networks, followed closely by the proposed end-to-
end trained MobileNetvV2 (93.14%). The
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performance gap is minor (<0.6%). This indicates
that both models are effective at extracting features
related to solar panel fault detection. Particularly, the
MobileNetV2 attains this result with far fewer
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parameters and less implication time associated to
GoogleNet, see the Table 6. When comparing the
end-to-end trained network against its version of
frozen backbone, a pure development is observed,
and the accuracy growths from 90.29% to 93.14%,
and the F1-score increases from 91.6% to 93.12%.
This development guarantees the importance of
letting the backbone adapt its feature extraction
capabilities to the solar panel dataset, instead of
depending solely on pre-trained ImageNet
representations. It is worth observing that this
improvement in accuracy does not need any
additional cost of computation at the stage of
inference (check Table 6). When comparing a big
and hard-working model like the DenseNet121 with
lightweight models like MobileNetV2, the small
model performs better. From our point of view, this
is due to the nature of the solar panel image, which
offers a simple texture, limited color differences, and
a shape with static properties. So, these
characteristics do not require a complex architecture
like in DenseNet121, and this complexity can reduce
performance.

Based on Table 6, the computational results
show the trade-off between accuracy and efficiency
(i.e., computational cost). While models such as
VGG19 and Xception achieved competitive
accuracy, they required large numbers of parameters
(20M and 21.8M, respectively) and performed slow
inference speeds on the Jetson Nano (294.6 ms and
201.8 ms, respectively). These delays make them
impractical for real-time deployment on limited-
resource devices. On the other hand, the
MobileNetV2 achieved one of the best trade-offs
using only 2.8M parameters and keeping an
inference speed of 44.4 ms on Jetson Nano, and still
achieving >93% accuracy. By comparison,
GoogleNet (65.3 ms) is slower and heavier (6.1M
parameters), whereas SqueezeNet is extremely
lightweight (0.9M parameters, 24.6 ms inference
time) but reduces accuracy (89.71%). Therefore,
MobileNetV2 offers an optimal balance between
accuracy and efficiency, which makes it the most
suitable model for deployment on the Jetson Nano.

The per-class performance of the proposed
model is also considered to identify strengths and
limitations as presented in Table 7. Furthermore, to
assess the effectiveness of the proposed model
against existing approaches, various related works
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[24-26, 33-36] that used the same dataset in our
work (e.g., the Faulty Solar Panel dataset) are
selected for comparison. The comparative results are
presented in Table 8.

Table 7. Accuracy analysis across each class of the
proposed model

Class Precision Recall Fl1-score
Bird-drop 90 92 91
Clean 97 97 97
Dusty 89 87 88
Electrical damage 95 95 95
Physical damage 92 86 |89
Snow-covered 96 100 98

The comprehensive class-wise evaluation in
Table 7 demonstrates that the suggested model
consistently performs well across various fault
categories in terms of per-class performance. The
model achieved almost perfect detection in classes
like clean (precision, recall, and F1-score: 97%) and
snow-covered (precision 96%, recall 100%, F1-score
98%). Similarly, electrical damage is identified quite
well with balanced precision and recall for both at
95%. More difficult cases are dusty (precision 89%,
recall 87%, F1-score 88%) and physical damage
(precision 92%, recall 86%, F1-score 89%). We
observe that the visual similarities between dust
accumulation and other surface irregularities may
occasionally confuse the model. Nevertheless, the
overall per-class results prove the robustness of the
proposed method in handling both common and rare
classes.

Table 8 shows that the proposed method
outperforms all previous baseline models with an
accuracy of 93.1% and an F1-score of 93.1%. This is
about a 2% upgrading from the previous method in
work ([26], which obtained an accuracy 91.4%.
Other works, like [33, 34, 36], obtained accuracies
below 88%, once more emphasizing the efficiency
of the proposed fine-tuned MobileNetV2 method.
Particularly, the methods in works [24] and [25] are
significantly lower accuracies 75% and 83.9%,
respectively. The consistent advantage across
accuracy, precision, recall, and F1 demonstrates that
the proposed model not only generalizes better but
also ensures reliable deployment in real-world solar
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panel inspection situations. Overall, the results
presented in this section demonstrate that the
proposed approach offers a relatively good balance

between accuracy and efficiency, which makes it
highly feasible for embedded devices like the Jetson
Nano.

Table 8. Performance comparison with existing works

Method Year Accuracy  Precision  Recall F1-

score
Akinca et al. [33] 2024 87.5 87.9 88.7 88.1
Nunes et al. [34] 2024 87.6 - - 88.0
Ghahremani et al. [35] 2024 - 89.7 87.7 90.0
Ledmaoui et al. [26] 2024 91.4 - - 91.6
Kazemi et al. [25] 2025 75.0 - - -
Kilci et al. [24] 2025 83.9 84.0 83.9 83.9
Gasparyan et al. [36] 2025 87.4 - - 85.8
Proposed 2025 93.1 93.3 92.9 93.1

5. Limitations and Future Work 6. Conclusion

Despite the effective presentation of the proposed
method, some challenges remained. First, the current
study depends on only the RGB imaging technique,
which may limit the detection process of micro-
cracks or internal cell defects that could better
identified by thermal or electroluminescence
imaging. Second, the model was evaluated on a
publicly available dataset, and real-world
deployment in large-scale solar farms may encounter
variations in lighting, weather, and panel orientation
that could affect accuracy. Third, although the Jetson
Nano succeeded in providing real-time inference for
single images, processing a large number of images
continuously or integrating with multiple drones
may require further optimization or more powerful
embedded  platforms.  Additionally,  certain
categories, such as dusty and physical damage,
indicated relatively lower recall values due to visual
similarities with other classes. Future research will
focus on incorporating advanced data augmentation,
attention mechanisms, in addition to multimodal
inputs (e.g., thermal or electromagnetic signal) to
further improve classification robustness.
Furthermore, extending the framework to drone-
based or loT-based inspection systems can allow
fully autonomous solar farm monitoring at large
scales.

2763

This study presented an artificial intelligence-
based method to detect faults in solar PV panels
utilizing a lightweight deep learning model and
embedded platform deployment. For training and
testing the proposed model, we used a publicly
available dataset that consists of six different
conditions of solar panels. Data balancing with
augmentation strategies is applied to handle class
imbalance and improve generalization. Our network
is an adapted version of the MobileNetV2
architecture and trained in an end-to-end fashion to
fully utilize transfer learning and achieve optimal
feature extraction for solar panel images. Extensive
experiments are conducted to compare the proposed
model with state-of-the-art CNN architectures,
including  GoogleNet, VGG19, ResNet18,
DenseNet121, EfficientNet-B1, and others. The
experiments  showed that the  fine-tuned
MobileNetV2 achieved an excellent balance
between accuracy and efficiency, with a
classification accuracy of 93.1%, a recall of 92.94%,
a precision of 93.37%, and an F1-score of 93.1%. It
outperforms many well-known CNNs and surpasses
recent related works on the same dataset.
Importantly, when deployed on the resource-
constrained Jetson Nano, the model maintained real-
time performance with an average inference speed of
444 ms per image and a model size of 2.8M
parameters. The obtained results confirm the
suitability of the proposed method for embedded
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applications in solar panel inspection and reveal its
practical value for smart and cost-effective
monitoring of PV solar farms. By enabling real-time
fault detection without reliance on cloud networks,
the system supports scalable, on-site, and energy-
efficient inspection. Such a solution has the potential
to reduce maintenance costs, minimize downtime,
and ultimately enhance the efficiency and reliability
of solar energy production.

Nomenclature

Al Artificial Intelligence

ANN Artificial Neural Network

ASPP Atrous Spatial Pyramid Pooling
BSDS Eg:]lzehlsq); rI(Segmenta\tion Dataset and
CNN Convolutional Neural Network
CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DL Deep Learning

EL Electroluminescence

ELPV Electroluminescence Photovoltaic
fps Frame per Second

GB Gigabyte

GPS Global Positioning System

GPU Graphics Processing Unit

IEA International Energy Agency

loT Internet of Things

loU Intersection over Union

IR Infrared Cameras

K-NN K-Nearest Neighbours

LPPT Limited Power Point Tracking
MPPT Maximum Power Point Tracking
ms Millisecond

PC Personal Computer

PL Photoluminescence

PV photovoltaic

RAM Random Access Memory

ReLU Rectified Linear Unit

RGB Red Green Blue

RTX Ray Tracing Texel eXtreme

S Second
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SD Secure Digital

SGD Stochastic Gradient Descent

SVM Support Vector Machine

Ti Titanium

VIiT Vision Transformer

YOLO You Only Look Once
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