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1. Introduction 

Soiling, the accumulation of dust, pollutants, and 

organic matter on the surfaces of solar photovoltaics 

(PVs) and thermal collectors, significantly impacts                

the efficiency and performance of solar energy 

systems. This phenomenon leads to reduced energy 

output, increased maintenance costs, and overall 

system degradation, particularly in regions with high 

dust accumulation [1]. Predicting and understanding 

soiling patterns is crucial for optimizing energy yield, 

reducing operational costs, and ensuring long-term 

reliability of solar power system  [2]. 

PV systems convert sunlight directly into 

electricity using semiconductor materials like silicon. 

They are widely used in grid-connected and off-grid 

A B S T R A C T 

Soiling of solar photovoltaic and thermal collectors can significantly reduce energy 

output, with losses reaching up to 78% in total yield and more than 1% per day in arid 

regions. Accurate soiling prediction is essential for optimizing system performance, 

minimizing downtime, and reducing operational expenses. This review critically 

examines empirical, analytical, and machine learning-based models used to forecast 

soiling effects. Empirical models, including transmittance loss and particulate matter-

based approaches, report errors between <2% and 14%, while regression models show 

higher inaccuracies ranging from 40% to 93%. Analytical models such as the Bergin 

and Toth frameworks provide structured physical estimations but often require 

calibration and may overestimate under certain conditions. Machine learning and deep 

learning models demonstrate superior predictive performance, with image-based 

approaches achieving F1 score of 0.913 and models integrating environmental and 

image data reaching up to 97% accuracy. Despite these advancements, challenges 

remain, including limited availability of high-quality data, lack of generalizability 

across different climates, and insufficient real-time adaptability. This review also 

explores soiling mitigation strategies such as self-cleaning coatings, automated cleaning 

systems, and environmental monitoring tools. It emphasizes the need for hybrid, 

adaptive frameworks integrating artificial intelligence and Internet of Things 

technologies for improved accuracy and operational efficiency. 
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applications, including rooftop installations and 

large-scale solar farms [3]. Solar thermal collectors, 

on the other hand, capture sunlight to generate heat 

for water heating, space heating, or industrial 

processes [4]. Both technologies are key to renewable 

energy systems, offering clean, scalable, and 

sustainable energy solutions. However, their 

efficiency is significantly affected by environmental 

factors, particularly dust accumulation [5]. 

Dust on solar PV panels blocks sunlight, reducing 

energy generation and causing power losses of up to 

78%, depending on dust type and local conditions [6, 

7]. Studies have shown that nonuniform soiling can 

cause local hotspots, leading to long-term PV module 

failure and a power output reduction of up to 30% [7]. 

Experimental studies have further demonstrated that 

different types of soiling, such as dust, leaves, and 

rainfall, have varying impacts on power loss, with 

leaves causing the most significant reduction at 38% 

[8]. Similarly, dust on solar thermal collectors 

impacts the optical efficiency [9], heat absorption and 

system efficiency, leading to a drop in the 

temperature of the heat transfer fluid. These 

efficiency losses increase maintenance costs, as 

regular cleaning is required to maintain optimal 

performance [10]. Regions with high dust levels, such 

as arid and semi-arid areas, face greater challenges 

[11]. 

Accurate soiling assessment is essential for 

optimizing maintenance strategies, as it helps in 

determining the most effective cleaning schedules 

and reducing unnecessary interventions. Predictive 

modeling plays a crucial role in this by forecasting 

soiling impacts, enabling proactive maintenance and 

minimizing operational costs associated with 

performance degradation and system downtime [10]. 

This review aims to evaluate and analyse existing 

soiling prediction models. While various soiling 

prediction models exist, including empirical, 

analytical, and machine learning-based approaches, 

they often lack accuracy, generalizability across 

diverse environmental conditions, or real-time 

adaptability [12]. Current models either oversimplify 

soiling dynamics or require extensive calibration, 

limiting their practical applicability.  Previous studies 

on soiling prediction for solar photovoltaic and 

thermal collectors have primarily focused on specific 

modeling techniques. While these investigations have 

provided valuable insights, they often lack an 

integrated framework that comprehensively review 

multiple predictive models. 

The novelty of this work lies in its comprehensive 

evaluation of existing soiling models, highlighting 

their strengths and limitations while identifying 

critical research gaps. Unlike previous reviews that 

concentrate on isolated modeling techniques, this 

study systematically synthesizes recent developments 

across empirical, analytical, and AI-driven 

methodologies. Therefore, the present review 

underscores the urgent need to develop multi-factor, 

adaptive prediction frameworks that incorporate 

continuous data streams and real-time monitoring 

through IoT integration. These advances are intended 

to support the solar energy community in optimizing 

maintenance strategies and enhancing the reliability, 

efficiency, and cost-effectiveness of solar power 

generation systems. 

The paper is structured to provide a 

comprehensive review of the modeling and prediction 

of soiling effects on solar PV and thermal collectors, 

with a focus on advances, challenges, and future 

research directions. It begins with an Introduction that 

sets the context for the study, outlining the 

importance of accurate soiling prediction for 

optimizing solar system performance and 

maintenance. A section on Mechanisms and Factors 

Affecting Soiling follows, detailing the sources, 

environmental influences, and regional variability in 

soiling accumulation. The paper then delves into 

Soiling Models, reviewing the various approaches; 

empirical, analytical, and machine learning-based, 

used to predict soiling effects. Following this, a 

section is included on Model Performance 

Comparisons, followed by a section outlining the 

Integration of Soiling Models into Performance 

Forecasting, discussing how soiling models are used 

to predict energy yield and guide maintenance 

decisions. The paper also highlights the Economic 

Analysis of Soiling, and the Uncertainties, 

Challenges, and Future Improvements in soiling 

prediction, identifying key sources of error and 

suggesting improvements for model accuracy. 

Finally, the Conclusion summarizes the key findings 

and outlines implications for the solar industry, 

emphasizing the need for further research to enhance 

soiling mitigation and prediction methodologies. 

2. Mechanisms and Factors Affecting Soiling 

2.1. Sources and Composition of Soiling 

The primary source of soiling includes mineral 

dust, which varies in concentration based on 

geographic location and environmental conditions 

[13, 14]. Pollen and soot are significant contributors, 

with organic particles exhibiting higher adhesion to 

surfaces due to their chemical properties [15, 16]. 

Areas with high traffic contribute hydrocarbons and 
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other pollutants, enhancing particle adhesion through 

chemical interactions [16].  Industrial activities and 

vehicle emissions contribute to particulate matter 

(PM) in the atmosphere, which settles on PV panels 

and thermal collectors, obstructing sunlight and 

diminishing performance. Haze from industrial 

emissions can reduce solar irradiance by up to 80%, 

severely affecting PV output [17]. In China, air 

pollution has led to a decrease in PV capacity factors, 

with reductions of up to 16.51% observed in certain 

regions [18]. Reducing emissions from residential 

and transportation sectors could significantly enhance 

PV energy generation, with potential increases of 

10.3 TWh in China alone  [19]. While industrial 

emissions and vehicle exhaust pose challenges to 

solar energy efficiency, advancements in air quality 

regulations and technology may offer pathways to 

mitigate these impacts, promoting a cleaner energy 

future. 

Dust particles often consist of silica, clay, and 

other minerals, which affect their physical properties 

and adhesion potential [13, 14]. The size of particles 

influence how they interact with the PV surface. Fine 

particles (less than 3 µm), such as carbon and cement 

dust, significantly degrade PV performance due to 

their strong adhesion and high light absorption. In 

contrast, coarse particles (greater than 3 µm) mainly 

contribute to mass deposition on PV surfaces, leading 

to substantial soiling losses, up to 12% per week in 

some regions [20, 21].  

The chemical composition of dust particles plays a 

pivotal role in determining the severity and 

persistence of soiling on solar PV and thermal 

collectors. Studies show that organic-rich and carbon-

based particles, such as pollen and graphite, exhibit 

significantly higher adhesion forces to glass surfaces 

due to their surface energy characteristics, leading to 

greater attachment efficiency and reduced 

removability during the cleaning process [15]. 

Mineralogical components like silica, calcite, and 

clays can promote cementation under dew or 

humidity, causing particles to harden and become 

resistant to natural or manual cleaning [13]. In 

Mediterranean environments, dominant dust 

elements such as silica and calcite have been linked 

to reduced optical transmittance by up to 75%, 

correlating with significant PV performance drops 

[22]. While the focus is often on the detrimental 

effects of soiling, some studies suggest that 

understanding the specific composition of dust can 

lead to tailored cleaning techniques that minimize 

energy losses and maintenance costs [10].  

 

2.2. Environmental and Climatic Factors 

Climatic conditions affect dust deposition rates, 

which in turn impact the efficiency and power output 

of PV systems. Higher humidity levels increase the 

adhesion of dust particles to the panel surface, leading 

to greater soiling accumulation and reduced energy 

output [23]. In contrast, lower humidity can facilitate 

easier cleaning of panels, thereby enhancing their 

performance [24]. Increased wind speed can reduce 

dust deposition on solar panels, as it helps to dislodge 

accumulated particles [23]. Wind direction also plays 

a role; prevailing winds can either carry dust away 

from or towards the panels, affecting soiling rates 

[25]. Studies indicate that high dust densities can lead 

to significant power reductions, with energy output 

decreasing by up to 40% due to prolonged soiling 

[23]. The relationship between these climatic factors 

and soiling is site-specific, necessitating tailored 

cleaning strategies for optimal performance [24]. 

Although humidity and wind are widely known to 

exacerbate soiling, they also present opportunities for 

natural cleaning mechanisms, such as rainfall, which 

can mitigate dust accumulation and improve panel 

efficiency [25]. 

Rainfall is a natural cleaning agent for solar 

panels, but its effectiveness depends on frequency, 

intensity, and environmental factors. Heavy rainfall is 

more effective at removing dust and debris, while 

light rain may redistribute contaminants, leading to 

further accumulation [26]. Frequent rainfall 

correlates with reduced soiling levels, as observed in 

studies where the minimum transmittance loss 

occurred during periods of high rainfall frequency 

[27]. Higher intensity rainfall (50-100 mm) 

significantly improves the cleaning effect, increasing 

PV output power by 16.1% to 28.2% compared to 

light rainfall [28]. However, a minimum intensity 

threshold must be met for effective cleaning; lighter 

rains often fail to remove accumulated dust [26]. 

Soiling of solar PV systems varies significantly 

with seasonal changes and geographic location, 

impacting energy generation efficiency. Studies show 

that desert regions experience higher soiling rates due 

to abundant dust and infrequent rainfall, leading to 

daily energy losses exceeding 1% [29]. Geographic 

factors, such as proximity to unpaved roads, also 

contribute to non-uniform soiling, which can reduce 

performance across large-scale PV installations [30]. 
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Seasonal variations influence dust accumulation 

patterns, with summer months typically exhibiting 

increased soiling due to dry conditions and higher 

atmospheric dust concentrations [31]. The impact of 

different environmental variables is summarised in 

table 1, in which high airborne dust concentration 

reduces transmittance, causing up to 1% daily power 

loss, while low wind speeds increase soiling. Wind 

direction affects dust deposition, especially on 

aligned panels. High humidity promotes particle 

adhesion and caking, worsening soiling, whereas 

rainfall can either redistribute dust (light rain) or 

effectively clean panels (heavy rain). Temperature 

variations reduce dust buildup via thermophoresis, 

while longer exposure times lead to greater soiling. 

Additionally, horizontal panel installations 

experience higher dust accumulation, causing 

significant efficiency losses. 

Figure 1 categorizes factors affecting soiling 

including environmental and geographical [32], 

installation geometry & panel surface properties, and 

operational & seasonal factors. Environmental factors 

include dust type, rainfall, temperature, humidity, and 

wind, which influence dust accumulation and 

removal. Geographical factors cover topography, 

altitude, and urban/rural settings, affecting dust 

deposition patterns. Installation-related factors such 

as tilt angle, panel spacing, surface properties, and 

tracking mechanisms determine how much dust 

accumulates. Operational & seasonal factors involve 

cleaning frequency, methods, windstorms, 

temperature fluctuations, and seasonal variations, all 

impacting soiling dynamics and mitigation strategies. 

 

 

Table 1. Impact of Environmental Variables on Soiling of Solar Collectors 

 Environmental Variable Impact on Soiling Source 

1 Airborne Dust Concentration Higher dust levels reduce transmittance and solar irradiation, 

leading to a performance drop of up to 1% per day. 

 

 

[13] 

2 Wind Speed  Increased wind speeds reduce dust accumulation on PV 

surfaces by promoting particle resuspension and removal, 

while lower wind speeds lead to higher soiling rates. 

 

 

[33, 34] 

3 Wind Direction Arrays aligned with the wind may experience more soiling 

due to direct dust transport. 

 

[35] 

4 Relative Humidity High humidity leads to particle adhesion, causing 

cementation and caking, worsening soiling.  

 

[13, 36] 

5 Rainfall Light rain can redistribute dust, but heavy rain effectively 

cleans panels, reducing soiling. 

 

 

[37] 

6 Temperature Higher temperature differences between the module surface 

and surrounding air can reduce dust accumulation due to 

thermophoresis. 

 

 

[38] 

7 Exposure Time Longer exposure times correlate with greater soiling. [39] 

8 Installation Geometry Horizontal surfaces experience a decrease in transmittance 

due to soiling, with significant power generation losses. 

[40] 

    

 

2.3. Differences in Soiling Behavior Between PV 

Modules and Thermal Collectors 

Differences in soiling behaviour between PV 

modules and thermal collectors arise primarily from 
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their distinct optical requirements and system 

configurations. PV modules, which convert light 

directly into electricity, suffer from general light 

attenuation due to dust accumulation. In contrast, 

Concentrating Solar Thermal (CSP) collectors, 

especially those using mirrors or lenses, require 

precise focusing of sunlight, making them far more 

sensitive to scattering caused by even minor dust 

deposits. As a result, CSP systems can experience 

performance losses 3 to 14 times higher than PV 

systems under similar soiling conditions [41, 42].   

PV modules in arid climates can suffer 

substantial power losses due to soiling, with daily 

soiling ratios reaching 0.70 - 0.73 for poly-Si and 

CdTe technologies [43]. Different PV technologies 

show varying responses to soiling, with mono-Si 

modules outperforming poly-Si in overall efficiency 

but experiencing greater soiling-related losses [44].  

 

 
 

Figure  1. Factors influencing soiling on solar collector surfaces. These factors affect dust accumulation and 

adhesion, impacting solar collector performance and efficiency 

 

 

3. Soiling Models Modeling is essential for estimating energy 

losses and optimizing cleaning schedules for PV 

modules and thermal collectors [45]. Recent studies 
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have introduced various approaches to quantify 

energy reduction caused by factors like dust 

accumulation and shading, which enables more 

accurate predictions of system performance [46]. 

These models simulate different cleaning scenarios to 

determine optimal cleaning intervals that maximize 

energy output while minimizing maintenance costs 

[47].  

Figure 2 illustrates the classification of soiling 

models into Empirical, Analytical, and Machine 

Learning & AI approaches. Empirical models rely on 

experimental data and statistical methods, such as 

transmittance loss, particulate matter analysis, and 

regression techniques [14, 48]. Analytical models, on 

the other hand, use physical principles and theoretical 

formulations to predict the effects of soiling [49, 50]. 

Machine Learning & AI models apply various 

techniques, including supervised, unsupervised, and 

reinforcement learning, to dynamically analyze and 

mitigate soiling impacts [37]. This classification 

assists in choosing the most appropriate modeling 

approach based on available data and computational 

requirements. 

 

 

Figure  2. Different classifications of soiling models 

However, it is important to note that the 

boundaries between different soiling models are often 

non distinct. For example, machine learning and AI-

based models, which are primarily data-driven, can, 

in certain contexts, be classified under empirical 

modeling [51, 52]. Similarly, analytical models that 

derive inputs from physical measurements may also 

exhibit characteristics of empirical models. In this 

study, a model is classified as empirical when 

measured data is directly used to establish 

relationships without the application of additional 

complex algorithms. Conversely, a model is 

categorized as analytical when it incorporates 

theoretical frameworks, analytical equations, or 

computational algorithms in the modeling process. 

This distinction is essential, despite the empirical 

basis of many models, because the choice of approach 

affects the accuracy, generalizability, and 

computational complexity of predictions. Analytical 

models integrate fundamental physical laws, making 

them more adaptable to different conditions. AI and 

machine learning models, although empirical, utilize 

pattern recognition capabilities that go beyond simple 

curve fitting, enabling adaptive learning from diverse 

datasets. Thus, while empirical measurements form 

the foundation of most soiling models, the 

classification system reflects the dominant 

methodology used to derive insights and make 

predictions. 

3.1. Empirical or data driven Models 

Empirical or data-driven models are typically 

based on observed data. However, their accuracy can 

be limited when applied to different geographical 

locations, as they may overestimate certain 

parameters if developed using data from regions with 

varying environmental conditions [53]. Despite this 

limitation, empirical models provide a foundational 

understanding of soiling impacts and are useful for 

initial system design and optimization.  
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Empirical soiling models typically describe 

soiling behaviour as a function of environmental, 

operational, and surface material factors. Models 

incorporate variables such as dust concentration, 

rainfall, wind speed, and the tilt angle of solar 

collectors [55–57]. Empirical models tend to be easier 

to implement because they rely on experimental data 

rather than requiring a deep understanding of the 

physics of adhesion [58]. The main categories of 

these models include time-dependent accumulation 

models, cumulative dust deposition models, and 

models based on local environmental factors such as 

wind speed, solar radiation, and humidity [54]. 

One of the most applied empirical approaches is 

the time-dependent soiling accumulation model, 

which describes the accumulation of dust over time, 

often assuming an exponential or linear growth 

pattern [59, 60]. The rate of dust accumulation in such 

models is typically influenced by environmental 

factors like wind speed, rainfall, and local dust 

characteristics [61]. Empirical models provide 

simplicity and data-driven insights, but they may 

oversimplify complex interactions, require extensive 

data, and may be complex to implement. 

3.1.1. Transmittance loss models 

Soiling on solar PV and thermal collectors, 

significantly reduces transmittance, leading to 

efficiency losses in solar energy systems [24]. Models 

have been developed to predict and quantify these 

losses [62]. Spectral and single-value transmittance 

models measure transmittance at specific 

wavelengths (e.g., 500–600 nm) to estimate soiling 

losses, tailored to the preferred spectral regions of 

different PV technologies [63]. Transmittance loss 

models, for instance, correlate dust mass with reduced 

solar radiation reaching PV panels [64]. For instance, 

Elminir et al. [65] examined how dust accumulation 

affects the transmittance of glass covers on solar 

collectors in arid climates. The results showed a clear 

link between dust deposition and reduced 

transmittance. As dust increased from 15.84 g/m² (0° 

tilt) to 4.48 g/m² (90° tilt and 135° azimuth), 

transmittance dropped from 52.54% to 12.38%. 

Hegazy [66] investigated the impact of dust on solar 

transmittance. The results also showed a strong 

correlation between dust deposition, tilt angle, and 

transmittance reduction, with empirical correlations 

developed to quantify these effects.  

3.1.2. Particulate Matter (PM) Deposition-Based 

Models 

Various models have been developed to predict 

and analyze the impact of PM deposition, each 

offering unique insights into the factors influencing 

soiling and its mitigation [67–69]. Simple models 

predict soiling losses by considering ambient PM 

concentrations, such as PM10 and PM2.5, along with 

factors like PV array tilt and rainfall [70]. These 

models estimate soiling over time by analysing the 

relationship between PM levels, dust accumulation, 

and rain removal [71]. A study by You et al. [49] 

established a direct relationship between dust mass 

and PM concentration, demonstrating how increases 

in particulate levels correlate with greater soiling 

impacts. Validated against measured data, these 

models demonstrate the ability to simulate soiling 

accurately, providing a practical tool for assessing 

soiling impacts in real-world scenarios [70].  

Some models adopt a comprehensive approach by 

integrating multiple factors into a single framework, 

considering the entire "dust life cycle" from 

generation to removal. These models emphasize the 

interaction between dust particles and solar collector 

surfaces, aiming to provide a holistic understanding 

of soiling processes [10]. Additionally, models like 

the Community Multiscale Air Quality (CMAQ) 

model simulate PM dry deposition and analyze its 

impact on PV performance across different locations, 

offering a broader perspective on soiling effects [67]. 

3.1.3. Regression models 

Regression models play a crucial role in soiling 

modeling of solar panels by providing predictive 

capabilities that enhance the understanding and 

management of soiling effects on PV performance 

[72]. These models help in estimating the extent of 

soiling, which is essential for optimizing cleaning 

schedules and improving energy production 

efficiency [72]. Equation (1) is the general form of a 

regression model where y is the dependent variable.  

1 2, , , nx x x  are the independent variables. β0  is a 

constant term while β₁ , β₂ , ..., βₙ are the 

coefficients, representing the impact of each 

independent variable on the dependent variable. ϵ is 

the error term, accounting for the difference between 

the actual and predicted values of y. 

0 1 1 2 2 n ny x x x          ٍ        (1) 
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The work of Guo et al. [73, 74] significantly 

advanced this field by exploring the relationships 

between soiling metrics and key environmental 

variables such as relative humidity, wind speed, and 

PM10 concentrations. Their studies revealed how 

these factors interact to influence the extent of soiling, 

providing a quantitative basis for predicting 

maintenance needs in various applications, from solar 

panels to building facades.  

A study by Kaiss and Hassan [75] employed a 

regression approach to model dust deposition rates on 

ground-mounted PV panels, considering factors such 

as dust diameter, wind speed, and tilt angle. Results 

showed that dust diameter had the greatest impact, 

followed by tilt angle and wind speed. The final 

regression model, with an R² of 82.75%, indicated a 

positive correlation between dust diameter and 

deposition rate, while higher wind speeds reduced 

deposition due to turbulence.  

3.2. Analytical Models 

Analytical models for solar collector soiling are 

crucial for quantifying the impact of dust 

accumulation on solar energy systems. These models 

can be divided into physical models and theoretical 

models [13, 76]. However, these models tend to 

overlap in practice and hence it is often uncommon to 

find a purely physical or theoretical model. Physical 

models focus on the physical processes of dust 

deposition and removal [77]. These models provide 

mathematical formulations to estimate the energy 

losses caused by soiling and often integrate 

environmental data with optical and electrical 

properties of solar collectors [2, 78, 79]. 

Analytical models account for multiple deposition 

mechanisms, including gravitational settling, inertial 

impaction, Brownian diffusion, electrostatic 

attraction, and turbulent deposition, and often 

incorporate environmental parameters such as wind 

speed, humidity, and particle properties to enhance 

predictive accuracy [80]. 

3.2.1. The Bergin Model 

The Bergin model is a physics-based approach 

designed to estimate soiling losses in PV panels 

caused by PM deposition [81]. It assesses the impact 

of different PM species such as dust, organic carbon 

and black carbon on transmittance losses, calculating 

the total mass of each deposited component. The 

model expresses transmittance loss per unit of 

deposited mass, incorporating parameters like mass 

absorption efficiency and scattering properties to 

quantify soiling effects. It assumes a linear 

relationship between transmittance loss and mass 

loading. The Bergin model offers a structured 

methodology for evaluating PV soiling but requires 

adjustments based on empirical observations to 

improve reliability in specific conditions. The Bergin 

model is shown in equation (2) where  

FPM

  is the 

transmittance loss per unit mass, i is the different 

species of particulate matter (PM). PMF is the total 

PM loading in a specific time period. 
scat,,i iE  and 

abs,iE  respectively represent the up-scatter fraction of 

the PM, mass scattering efficiency, and the efficiency 

of mass absorption. 

 abs, scat, ,

1

1 n

i i i F i

iF F

E E PM
PM PM







       (2) 

The Bergin model's performance in estimating 

soiling losses on photovoltaic panels was investigated 

by Bessa et al. [82] in Jaén, Spain, and it showed 

limitations, particularly in overestimating losses 

during dry periods. The model was also sensitive to 

environmental factors, especially organic carbon 

concentrations, which led to overestimation due to the 

scattering of solar radiation.  

3.2.2. The Toth Model 

The Toth model shown in equation (3), was 

designed to estimate daily soiling losses on PV 

panels, using PM concentration and rainfall as key 

environmental parameters [83]. The model calculates 

cumulative soiling losses by summing the PM 

concentration over time, with constants A1 and A2 

determined through a Truncated Newton Algorithm. 

A critical assumption of the Toth model is that only 

coarse particles (PM10–2.5) are removed during 

rainfall, while smaller particles (PM2.5) are 

considered sticky and not washed off, which may 

cause inaccuracies, particularly in areas with high 

concentrations of fine particles. The Toth model tends 

to overestimate soiling losses during dry periods 

when fine particles are abundant [82]. While 

valuable, the model's reliance on specific 

assumptions about particulate matter behaviour 

suggests the need for caution when applying it in 

various geographical contexts. 
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 1 21.0s d dr A F A C             (3) 

Where Fd  and Cd represents the cumulative soiling 

losses. 

3.2.3. The You/Saiz model 

You et al. [49] developed a model based on 

particle deposition, which accounts for an efficiency 

loss of 0.0139% per gram of deposited dust [84]. The 

You/Saiz model estimates the efficiency loss of PV 

panels due to dust and pollen accumulation, using a 

coefficient derived from Saiz et al. [85], which 

suggests a 3.8% efficiency loss per gram of deposited 

material. The model shown in equations (4) – (6) 

incorporates environmental factors such as deposition 

velocity (Vd), PM concentrations (PM2.5 and PM10), 

and the number of days without rainfall (ND), to 

calculate the dust deposition density and overall 

efficiency loss. The final equation integrates these 

parameters, making the model adaptable to different 

regions. The You/Saiz model is a reliable and 

adaptable tool for estimating soiling impacts on PV 

panel efficiency, offering accurate predictions based 

on local environmental conditions [82]. In this model, 

the dust deposition density is given by equation (4) 

and the soiling ratio, rs is given by equation (6). 

6

d D 10V PM N              (4) 

loss 0.0139             (5) 

s 1   0.0385r              (6) 

 

 

 

3.2.4. The Coello Model 

The Coello model estimates soiling losses on PV 

systems by incorporating environmental factors such 

as PM concentration, deposition velocity, rainfall, 

and PV tilt angle [70]. The model assumes that soiling 

results from atmospheric particle deposition and it 

calculates dust accumulation over time using these 

parameters, generating a time series of cumulative 

mass deposition to assess long-term soiling effects. 

The model also evaluates transmission losses based 

on the soiling ratio and includes a reset mechanism 

triggered by rainfall to account for dust removal. By 

integrating these elements, the Coello model 

(equations 7 - 8) provides a structured approach to 

understanding soiling impacts on PV efficiency under 

varying environmental conditions. 

 10 2.5 10 2.5 2.5 2.5 cosm v P v P t                (7) 

 0.8473

s1 0.3437 0.17r erf              (8) 

Where m is the mass accumulation per time step 

(g/m²), determined by the deposition velocity (v) in 

meters per second (m/s), the ambient particulate 

matter concentration (P) in grams per cubic meter 

(g/m³), and the time step (t) in seconds. The PV 

system's tilt angle (β) also influences deposition. 

Particles with aerodynamic diameters between 10 and 

2.5μm are denoted by the subscript 10–2.5, while 

those smaller than 2.5μm are indicated by the 

subscript 2.5.  

3.2.5. Computational Fluid Dynamics (CFD) 

Models 

CFD models for solar collector soiling focus on 

understanding the interactions between dust 

deposition and the performance of solar PV systems 

[86, 87]. These models simulate airflow, dust particle 

behaviour, and their effects on energy yield and have 

been applied to study soiling and performance 

optimization in solar collectors [88]. CFD 

simulations can predict dust deposition on PV 

modules, considering factors such as wind direction, 

tilt angle, and orientation [89–91]. 

Dust deposition is usually analysed using the 

Reynold Averaged Navier Stokes (RANS) equations 

coupled with the Discrete Phase Model (DPM) [87]. 

The RANS equations are used to describe the motion 

of fluid flows, especially turbulent flows. They are 

derived by decomposing the flow variables into mean 

and fluctuating components. The RANS equations for 

incompressible flow are shown in equation (9) [92]. 

2

2

τ1
ν

ρ

iji i i
j

j i j j

u u up
u

t x x x x

  
    

    
        (9) 

Where;  iu is the time-averaged velocity component 

in the i-th direction, p  is the time-averaged pressure, 

ρ is the fluid density while ν is the kinematic 
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viscosity. τij  is the Reynolds stress tensor, 

representing the effect of turbulence, and is defined 

as 
' 'τij i ju u , where 

'  iu are the fluctuating velocity 

components. 

 

3.2.6. Soiling as a Function of Total Radiation of 

PV Panel 

Shukla et al. [93] developed a model which 

quantifies the impact of dust on the total radiation 

received by a PV panel, crucial for predicting 

efficiency loss due to soiling. It accounts for three 

radiation components: direct radiation, diffuse 

radiation, and reflected radiation. The model 

(equation 10) mathematically incorporates factors 

such as anisotropy index ( iA ), PV module slope (β), 

horizontal brightening factor (f), and ground 

reflectance (ρ) to determine effective radiation under 

dusty conditions. By analysing how dust alters 

radiation components, the model aids in optimising 

PV system performance in dusty environments and 

improving energy yield predictions. With θ being the 

angle of incidence of solar irradiance, the ratio  

cos
  dr

zcos





 represents the comparison between the 

direct (beam) radiation incident on a tilted surface and 

the direct radiation falling on a horizontal surface. 

Studies by Khalid et al. [94] indicate that this 

model is instrumental in quantifying the reduction in 

power output due to dust. For instance, it was noted 

that dust accumulation can lead to a power output 

reduction of 6.5% in Athens, 17.4% in Egypt, and 

varying percentages in other regions, such as 10% in 

the UAE and 4%-15% in Spain. 

   

3

1 cos
1

2

1 cos
1 sin   

2 2

T dr df i dr df iR R R A R A

f R




 

 
     

 

     
     

    

    

     (10) 

 

3.2.7. Bilinear Model 

The Bilinear Model [95] of PV power generation 

mathematically represents the relationship between 

solar irradiance and the power output of dust-affected 

PV panels. It establishes a bilinear relationship to 

assess efficiency loss due to dust accumulation. This 

model is particularly useful in dusty environments for 

predicting performance degradation and optimizing 

PV system design. Compared to other models, it 

balances complexity and practicality, making it a 

valuable tool for managing solar energy systems in 

soiling-prone conditions. Equation (11) is applied 

where the solar irradiance level G < 200 W/m2 and 

equation (12) is applied where G > 200W/m2. 

 
4

r

r

1 1 1
200

r C

G G
P P T T S

G


   
          

     

  (11) 

  r
r

r r

1
200

Cr

G GG
P P T T S

G G


  
          

   (12) 

 

Where, rG , rT , rP  are respectively the Standard 

Test Conditions (STC) reference parameters for solar 

irradiance, temperature and power. S represents the 

solar irradiance levels, β is the temperature 

coefficient, and CT  denotes the computed 

temperature. 

 

3.2.8. Dust Deposition Effected PV Output Power 

Model 

The Effected PV Output Power Model [96] 

quantifies the impact of dust accumulation on PV 

panel performance. It calculates power loss due to 

soiling by modeling power output as a function of 

solar radiation and dust accumulation. Key factors 

include total radiation received, G(W/m2), soiling 

loss index, and energy conversion efficiency, all of 

which influence energy production. The model helps 

analyze performance degradation, optimize cleaning 

schedules, and improve maintenance strategies. It is 

particularly useful for designing and managing PV 

systems in dust-prone areas to maximize efficiency 

and energy yield. This model is shown by equation 

(13), where     PVP W  is the dust deposition effected 

PV output power of a PV module of rated power 

 rP W  derated at  η %d . The temperature 

coefficient of the PV module is β (%/°C). Tc and Tr 

respectively represent the measured PV temperature 

and the reference temperature at STC in (°C). rG

(W/m2) is the reference irradiance at STC. 

 η 1PV r d C r

r

G
P P T T

G


 
      

 
      (13) 
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3.2.9. Energy Conversion Efficiency of a Dust 

Accumulated PV Panel Surface 

A model developed by Fan et al. [97] shown in 

equation (14) suggested that the energy conversion 

efficiency of PV panels is crucial in determining their 

effectiveness in converting sunlight into electricity. 

When dust accumulates on the panels, it can reduce 

this efficiency. The efficiency (η) is mathematically 

represented by the ratio of PV output energy  outP  

to input energy from solar irradiance ( eG ). Dust 

accumulation impacts both the output voltage (V) and 

current (I), leading to reduced efficiency by blocking 

sunlight and decreasing solar irradiance (G). A 

soiling loss index quantifies this efficiency loss. PVA  

represent surface area of the PV panel. 

out

e sun PV

P V I

G G A



 


         (14) 

3.2.10. Model of the Maximum Power Output of 

a Soiled PV Module 

Al-Addous et al. [98] showed that the maximum 

power output ( maxP )(W) of a soiled PV module is 

reduced due to dust accumulation, which impacts its 

performance. The model to calculate this output 

incorporates a soiling loss index that quantifies the 

reduction in power output, expressed as: 

 
 

1
1 β

r

max r r

r

G S
P P T T

G

 
      

 
    (15) 

where rP (W) is the power output at STC. G(W/m2) 

is the incident solar irradiance at 30o while rG

(W/m2) is the reference irradiance at STC. rS , β, T 

and rT  are respectively the soiling loss index, the 

temperature coefficient of power, the operating 

temperature and the reference temperature at STC. 

 

3.3. Machine Learning and AI-Based Soiling 

Prediction 

Machine learning (ML) and artificial intelligence 

(AI) have been increasingly employed for predicting 

soiling on solar collectors, enhancing the efficiency 

and reliability of solar power plants [61, 99, 100]. 

Machine learning and AI-based prediction algorithms 

can be classified into several categories, primarily 

based on their learning paradigms and the nature of 

the output they generate. The main classifications 

include supervised learning, unsupervised learning, 

and reinforcement learning, each with distinct 

algorithms and applications [101–104]. Recent 

advancements in machine learning and deep learning 

have introduced sophisticated predictive models, 

such as SolarQRNN, which use environmental data 

and panel images to predict soiling losses with high 

accuracy [105]. These models, integrate regression 

techniques and computer vision, outperforming 

traditional approaches [105, 106]. 

3.3.1. Supervised Machine Learning 

Supervised Machine Learning (SML) 

encompasses a variety of algorithms designed to 

predict outcomes based on labelled datasets [107]. 

These algorithms learn from input-output pairs, 

enabling them to generalize and make predictions on 

unseen data. The most prominent SML algorithms 

include Decision Trees, Random Forests, Support 

Vector Machines (SVM), Naive Bayes, K-Nearest 

Neighbours (KNN), and Neural Networks [108, 109]. 

Each algorithm has unique strengths and is suited for 

different types of problems, such as classification and 

regression tasks.  

Studies have analysed the performance of 

different ML algorithms. For instance, Lopez-

Lorente et al. [110] analysed the performance of the 

machine learning models which  revealed varying 

degrees of accuracy in estimating soiling losses. 

Among the ML models, CatBoost demonstrated the 

highest accuracy when trained with field 

observations, achieving a mean absolute error (MAE) 

of 0.88% and an RMSE of 1.25%. When using 

satellite-derived weather data, CatBoost maintained 

its leading position with an MAE of 1.10% and an 

RMSE of 1.55%. LightGBM followed closely, 

indicating competitive performance with a mean 

absolute percentage error (MAPE) of 56.1%. 

XGBoost, while slightly less accurate, reported the 

least normalized mean deviation error (nMDE) 

of 5.86%.  

The development of DGImNet, by Fang et al. 

[111], represents a significant advancement in the 

estimation of PV soiling loss. This deep learning 

model integrates images of PV panels with time series 
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environmental factors (TSEFs), employing a 

supervised learning approach on a labelled dataset to 

enhance predictive accuracy. The model achieved a 

root mean square error (RMSE) of 0.0406 and a mean 

absolute error (MAE) of 0.0774 in regression tasks, 

alongside a 76.59% accuracy and an F1-score of 0.69 

in classification tasks with 16 categories.  

Various ML and AI algorithms, including 

artificial neural networks (ANN), Physical Informed 

Neural Networks (PINN), Long Short-Term Memory 

(LSTM) networks, XGBoost, random forests, support 

vector machines (SVM), deep learning architectures, 

decision trees, convolutional neural networks (CNN), 

recurrent neural networks (RNN), particle swarm 

optimization (PSO), gradient boosting machines 

(GBM), genetic algorithms (GA), k-nearest 

neighbours (KNN), and ensemble learning 

techniques, have been used to develop predictive 

models [112–117].  

3.3.2. Unsupervised Machine Learning 

Unsupervised learning techniques have gained 

traction in modeling soiling on solar collectors due to 

their ability to identify patterns in unlabelled data and 

enhance predictive maintenance strategies [107]. 

Various machine learning models, including 

clustering and anomaly detection, have been explored 

to estimate soiling effects without predefined labels. 

Brenner et al. [118] proposed a data-driven approach 

using Decision Tree models to assess soiling in 

parabolic trough collectors, achieving an R² value of 

0.77, thereby improving cleaning schedules and 

operational efficiency [118]. While supervised 

models like neural networks and regression 

techniques have demonstrated accuracy in soiling 

estimation [119], unsupervised techniques such as 

clustering can offer cost-effective solutions by 

reducing dependency on labelled datasets. 

Additionally, deep learning-based spatial 

classification models have been used to detect soiling 

distribution through image processing techniques 

[120]. However, challenges remain in the real-time 

adaptation of unsupervised models to varying 

environmental conditions and different solar collector 

technologies. Integrating hybrid approaches, such as 

semi-supervised learning, may further enhance the 

predictive accuracy and automation of soiling 

detection systems. 

Unsupervised learning techniques offer promising 

avenues for analysing soiling patterns. Clustering 

algorithms, such as k-means or hierarchical 

clustering, could be employed to group similar soiling 

patterns or conditions, potentially uncovering new 

insights into the factors influencing soiling [121]. 

Additionally, dimensionality reduction methods like 

Principal Component Analysis (PCA) might help 

identify the most significant features affecting 

soiling, enabling the development of more efficient 

cleaning schedules [122]. 

The integration of edge devices and surveillance 

cameras, as demonstrated by the SoilingEdge model, 

could further enhance real-time unsupervised 

learning applications. By continuously monitoring 

and analysing soiling patterns, these technologies 

enable dynamic and adaptive responses to changing 

conditions [117]. 

3.3.3. Reinforcement Learning 

Reinforcement learning (RL) frameworks rely on 

predictive models to enhance decision-making, with 

Artificial Neural Networks (ANNs) playing a crucial 

role in this process [123]. ANNs have been effective 

in modeling soiling dynamics on PV panels [124, 

125], as demonstrated by a study that achieved an R² 

value of 0.68073 using meteorological data as inputs 

[112]. Sensitivity analysis further identified relative 

humidity and wind direction as key factors 

influencing soiling rates, providing valuable insights 

for optimizing cleaning strategies. These predictive 

capabilities make ANNs well-suited for integration 

into RL systems, where they can support adaptive 

maintenance decisions. 

Beyond ANNs, Decision Tree models have shown 

strong performance in estimating soiling levels for 

parabolic trough collectors, achieving an R² of 0.77 

and improving cleaning recommendations by 12.2% 

[118]. Other models, such as Random Forest and 

Multilayer Perceptron (MLP), have also been applied 

to soiling estimation on PV panels, with MLP 

exhibiting the lowest error rate [119]. These machine 

learning models can be incorporated into RL 

frameworks to refine decision-making and optimize 

maintenance schedules. 

Advanced deep learning techniques, such as 

convolutional neural networks (CNNs), have been 

employed to detect soiling through visible spectrum 

imaging, achieving high F1 scores in classification 

tasks [121]. Additionally, the SoilingEdge model 

leverages deep learning for power loss estimation due 
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to soiling, demonstrating robust performance across 

different hardware platforms [117]. These image-

based approaches, when integrated into RL systems, 

enable real-time monitoring and automated decision-

making. By combining machine learning and deep 

learning techniques with reinforcement learning, it is 

possible to develop autonomous systems that not only 

predict and detect soiling but also dynamically 

optimize maintenance strategies. This integration 

ultimately enhances the efficiency, reliability, and 

longevity of solar energy systems. 

4. Model performance comparisons 

Table 2 summarizes the performance of different 

soiling models, including empirical, analytical, 

machine learning and artificial intelligence-based 

models. 

 

Table 2. Comparison of Different Soiling Models and Their Performance in Solar Collectors 

No. Model Type Key Insight Accuracy Source 

1 Transmittance Loss 

Models 

Based on natural soiling experiments, these models 

showed errors <2%, making them highly accurate for 

site-specific estimations. 

<2% error [126] 

2 Particulate Matter 

(PM) Deposition-

Based Models 

Models using PM data showed errors ranging from 4-

14%, influenced by cleaning events, making them 

moderately reliable. 

4–14% error [126] 

3 Regression Models 

(Environmental 

Parameter-Based) 

Models relating soiling to environmental factors had 

high errors (40-93%), making them unsuitable for 

general applications. 

40–93% error [126] 

4 Analytical Models 

(Dust Accumulation-

Based) 

These models use dust deposition rates, 

environmental factors, and empirical equations to 

estimate soiling losses. 

- [54] 

 

5 Theoretical Models 

(Time-Dependent 

Soiling Effects) 

These models attempt to predict the impact of long-

term soiling on PV performance but face challenges 

in accurately modeling real-world conditions. 

- [54] 

 

6 Machine Learning 

Models (Image-Based 

Detection) 

CNN, SVM, RF models used for soiling detection; 

CNN achieved the best performance with an F1 score 

of 0.913. 

F1 score: 0.913 

(91.3% accuracy) 

[121] 

7 Supervised Learning 

(Weather & 

Operational Data) 

MLP model outperformed other ML models (RF, 

Decision Tree) with the lowest error of 0.0003, 

making it highly effective. 

Error: 0.0003 

(high accuracy) 

[119] 

8 Artificial Intelligence 

(AI) and Deep 

Learning (Real-Time 

Monitoring)-Based 

Predictive 

Maintenance 

Models using real-time image and weather data can 

detect soiling with high accuracy, reducing 

computational costs compared to traditional models. 

97% accuracy [127] 

     

 

 

5. Integration of Solar Collector Soiling Models 

into Performance Forecasting 

The integration of soiling models into solar 

collector performance forecasting has gained 

significant attention due to the adverse effects of dust 

accumulation on PV and solar thermal systems. 

Soiling affects energy yield by reducing the optical 

efficiency of solar panels, making its accurate 

prediction essential for improved forecasting. Studies 

have incorporated machine learning techniques, such 

as ANNs, to predict soiling rates based on 

meteorological conditions like humidity and wind 

direction [112]. Another approach integrates soiling 

into forecasting models using a digital twin 

methodology, allowing adjustments to machine 

learning-based predictions for more accurate power 

generation estimates [116]. For long-term forecasts,  

 

Monte Carlo simulations have been applied to 

quantify the uncertainty associated with soiling 
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losses, providing insights into the interannual 

variability of soiling and its impact on energy 

production [128]. Additionally, physics-based 

models have been developed to predict soiling on 

parabolic trough collector mirrors by considering 

mechanisms such as gravitational settling, impaction, 

and Brownian motion [129].  

Recent developments have shown potential for 

integrated models, offering pathways to 

simultaneously predict and mitigate temperature-

induced soiling effects in energy yield forecasting 

[130]. Furthermore, numerical insights into enhanced 

heat transport in PCM-based thermal systems, 

suggest that integrating thermal response models with 

soiling and performance forecasting could enable 

more accurate predictions of system behaviour under 

variable thermal loading [131]. In addition, the 

integration of predictive soiling models into multi-

generation systems, as proposed by Hashemian and 

Noorpoor [132], could support thermodynamic and 

thermoeconomic optimizations by accounting for 

environmental soiling effects on solar collectors.  

These findings highlight the necessity of 

integrating advanced soiling models into 

performance forecasting to minimize energy losses 

and optimize cleaning strategies, ultimately 

enhancing the efficiency and financial viability of 

solar energy systems. Table 3 presents a summary of 

selected studies on soiling prediction parameters, 

highlighting the most critical variables identified as 

having significant influence on model accuracy.

 

Table 3. Summary of key studies on soiling prediction parameters for photovoltaic systems, highlighting the most 

influential variables identified in each model 

No. Source Prediction Parameters Important Parameter(s) 

1 Kappler et al. [116] Global Horizontal Irradiance, Power value from the 

previous day, Solar elevation angle, air temperature, 

sunny minutes per hour, sun’s azimuth angle, wind 

speed 

Global Horizontal 

Irradiance, power output of 

the previous day, solar 

elevation angle 

2 Suhaimi et al. [112] Precipitation, wind angle, ambient temperature, wind 

speed, transient irradiation 

Wind speed 

3 Muller & Rashed 

[128] 

Soiling rates, rainfall, irradiance, PV system 

parameters, soiling variability 

Soiling variability 

4 Voukelatos et al. 

[129] 

 

Particle diameter and size distribution, deposition 

velocity, wind speed and direction, air temperature, 

aerosol particle concentration, sun position, relative 

humidity 

Wind speed, wind direction 

 

6. Economic Analysis of Soiling 

The economic implications of soiling in solar PV and 

thermal systems are increasingly recognized as 

pivotal in system design and operational strategies. 

Soiling reduces power output by diminishing 

irradiance on panel surfaces, which directly translates 

into lost revenue and increased maintenance 

expenditure. Globally, soiling reduces solar power 

production by at least 3 – 4% annually, resulting in an 

estimated €3 – 5 billion in revenue losses; this figure 

could rise beyond €7 billion if mitigation strategies 

are not enhanced [133]. 

Economic feasibility is especially critical in regions 

with high soiling rates, such as the Middle East and 

North Africa. For instance, a study in Saudi Arabia 

demonstrated that while soiling significantly reduces 

PV performance, optimal cleaning intervals can 

minimize economic losses effectively, underscoring 

the importance of localized, cost-sensitive cleaning 

strategies [134]. 

Techno-economic models have been used to 

determine cost-optimal cleaning schedules. These 

incorporate net present value (NPV) analysis and 

Monte Carlo simulations to assess uncertainties 

related to cleaning costs, environmental conditions, 

and electricity tariffs. For example, You et al. [49] 

developed a framework that showed relative NPV 

gains of up to 20% when optimal cleaning strategies 

were employed compared to routine, fixed-interval 

cleaning. Moreover, the economic burden of soiling 

is compounded by declining electricity prices, which 

reduces the marginal gains from additional energy 

recovery through cleaning. As observed in the U.S. 

market, the decreasing profitability of cleaning 

activities has paradoxically led to increased soiling-
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related energy losses because fewer systems undergo 

timely maintenance [135]. 

Innovative mitigation approaches, such as 

hydrophobic coatings, robotic cleaning systems, and 

predictive maintenance using AI, are being explored 

to improve return on investment. While these 

technologies require upfront capital, their long-term 

economic viability is favorable, particularly in high-

soiling zones. However, regional adaptation remains 

key; for example, agrivoltaic systems in Chile 

exhibited a 0.35% daily loss due to soiling, which 

drastically affected profitability during dry seasons 

[136]. 

Soiling imposes a substantial economic burden on 

solar energy systems, with losses spanning billions 

annually. Optimal mitigation strategies, tailored to 

local conditions and powered by predictive analytics, 

can significantly reduce these losses and enhance 

system profitability. Future deployment of solar 

technologies should prioritize integrated economic 

assessments to balance capital investments with 

operational savings. 

 

7. Uncertainties, Challenges, Limitations and 

Future Improvements in soiling modelling  

The accuracy of soiling models in solar 

collectors is significantly affected by environmental 

variability. Factors such as wind speed, humidity, 

precipitation, and airborne particulate matter lead to 

inconsistencies in model predictions. Studies have 

demonstrated that wind angle and transient irradiation 

play a crucial role in soiling deposition, making it 

challenging to develop universal predictive models 

[112]. Additionally, surface material properties and 

coating technologies influence soiling accumulation. 

Research on spectral reflectance loss suggests that 

different dust compositions and coatings can alter the 

degradation rates of mirrors and panels [137]. 

 

A major challenge in soiling modelling is the 

lack of standardized datasets for training ML models. 

Large-scale, publicly available datasets are scarce, 

making it difficult to generalize models across 

different climatic conditions [118]. Furthermore, 

testing protocols for evaluating soiling effects vary, 

reducing reproducibility in research. To address this, 

standardized testing frameworks are necessary to 

validate models under real-world conditions and 

enhance predictive reliability [79]. 

 

Hybrid modelling approaches, integrating 

empirical, analytical, and AI-driven techniques, offer 

a promising avenue for improving soiling predictions. 

Decision tree models and ANNs have shown high 

accuracy in estimating soiling levels based on 

operational and meteorological data [118]. 

Additionally, advancements in self-cleaning surfaces 

and nanotechnology-based anti-soiling coatings can 

significantly reduce soiling-related energy losses. 

These coatings, designed to repel dust and water, 

enhance optical efficiency and extend the 

maintenance intervals of solar collectors [72]. 

 

The integration of Internet of Things (IoT) 

sensors for real-time soiling detection is a key 

research focus. IoT-enabled sensors can provide 

continuous monitoring of soiling levels, facilitating 

timely maintenance and optimizing energy output. 

Furthermore, automated robotic cleaning systems and 

AI-driven predictive maintenance are being explored 

to improve efficiency and reduce operational costs 

[79]. Lastly, the development of climate-specific 

soiling models tailored to regional atmospheric 

conditions is crucial for enhancing predictive 

accuracy and optimizing cleaning schedules [112]. 

 

Addressing uncertainties in soiling modelling 

requires improvements in data availability, model 

validation, and hybrid analytical approaches. Future 

advancements, particularly in IoT-based real-time 

monitoring and self-cleaning technologies, have the 

potential to enhance solar collector performance and 

reduce maintenance costs. 

 

8. Conclusion and Future Research Directions 

Soiling significantly impacts the efficiency and 

reliability of solar PV and thermal collector systems 

by reducing energy yield and increasing operational 

costs. This review has examined various soiling 

models, including empirical, analytical, and machine 

learning-based approaches, highlighting their 

strengths, limitations, and applicability. While 

empirical models offer simplicity and direct data-

driven insights, they often lack predictive accuracy 

across diverse environmental conditions. Analytical 

models incorporate physical principles but require 

extensive parameter calibration. Recent 

advancements in artificial intelligence and machine 

learning have improved prediction accuracy; 

however, their effectiveness is constrained by data 

availability and the complexity of real-world 

conditions. 

Some limitations are inherent in the present 

study; the classification and comparison of models, 

i.e. empirical, analytical, and AI-based, were based 

primarily on reported outcomes and methodologies 
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rather than uniform benchmarking or meta-analysis. 

As such, differences in experimental setups, 

environmental contexts, and evaluation metrics 

among the reviewed studies may influence the 

comparability and generalizability of the conclusions 

drawn. Additionally, although efforts were made to 

identify critical research gaps and propose future 

directions, the evolving nature of the field means that 

some recent developments or unpublished works may 

not have been captured. The review also relied 

heavily on secondary data reported in the original 

studies, without the opportunity to validate or test the 

models independently. While the study discusses the 

integration of soiling models with IoT and machine 

learning frameworks, these insights are theoretical 

and not supported by empirical validation within the 

context of this review. These limitations highlight the 

need for empirical testing, real-world validation, and 

standardized evaluation frameworks to support future 

advancements in this field. 

 

Building on these observations, future research 

could explore several key areas to address current 

gaps and enhance the reliability and applicability of 

soiling prediction models. Despite progress in soiling 

modeling, several areas require further research and 

development: 

1. Hybrid Modeling Approaches – Future 

studies should focus on integrating 

empirical, analytical, and AI-based models 

to enhance predictive accuracy and 

adaptability across different climatic 

regions. Combining physics-based insights 

with data-driven techniques can improve 

model robustness. 

2. Real-Time Monitoring and IoT Integration – 

The integration of machine learning models 

with Internet of Things (IoT) sensors can 

enable real-time soiling detection and 

automated mitigation strategies. Developing 

cost-effective IoT-based monitoring 

systems will help optimize maintenance 

schedules. 

3. Standardized Data Collection and Model 

Validation – The lack of standardized 

datasets and validation frameworks limits 

the generalizability of soiling models. 

Establishing global benchmark datasets and 

testing protocols will enhance model 

reliability and comparability across different 

environments. 

4. Advanced Soiling Mitigation Strategies – 

More research is needed on novel anti-

soiling coatings, self-cleaning materials, and 

autonomous robotic cleaning systems. 

Evaluating the long-term effectiveness and 

economic viability of these solutions will 

support large-scale deployment. 

5. Economic and Environmental Impact 

Assessments – While soiling models 

primarily focus on energy losses, 

comprehensive cost-benefit analyses of 

mitigation strategies are limited. Future 

research should assess the financial trade-

offs between predictive cleaning schedules 

and energy recovery to inform industry best 

practices. 

6. Hybrid techniques for soiling prediction - 

Given the demonstrated effectiveness of 

Generalized Regression Neural Networks 

(GRNN) and Multilayer Perceptron Neural 

Networks (MLPNN) in related 

environmental and energy forecasting 

applications, these models offer 

considerable promise for future research in 

the prediction of soiling on solar energy 

systems. Although GRNN and MLPNN 

have not yet been widely applied 

specifically to soiling prediction, their 

capacity to model complex nonlinear 

relationships, adapt to diverse 

environmental variables, and generalize 

effectively from limited or noisy datasets 

makes them well-suited for such tasks. 

Their successful implementation in 

analogous domains such as wind power 

forecasting and solar irradiance estimation 

supports their potential utility in accurately 

capturing the multifactorial nature of 

soiling accumulation. Therefore, future 

studies should consider the application of 

GRNN, MLPNN, or hybrid models that 

combine their respective strengths, to 

develop robust predictive frameworks 

tailored to varying climatic conditions and 

dust deposition patterns.  

Addressing these challenges will contribute to the 

development of more effective and scalable soiling 

prediction and mitigation strategies, ultimately 
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enhancing the sustainability and efficiency of solar 

energy systems. Future advancements in AI, sensor 

technology, and material science will play a crucial 

role in overcoming existing limitations and 

optimizing solar power generation in diverse 

environmental conditions. 

 

Nomenclature  

 

 

Ai Anisotropy index 

β PV system tilt angle (°) 

βi
 Up-scatter fraction of the particulate 

matter 

β₁ , β₂ , ..., 

βₙ 

Regression coefficients  

Cd,  Fd  Soiling loss coefficient 

ϵ Error term 

Escat,i Mass scattering efficiency (m2/g) 

Eabs,i Efficiency of mass absorption (m2/g) 

f Horizontal brightening factor 

G Total solar radiation received (W/m²) 

rG  Reference solar irradiance (W/m2) 

m  Mass accumulation per time step 

(g/m²) 

ND Number of days without rainfall 

η Energy conversion efficiency 

  Angle of incidence of solar irradiance 

(o) 

z  Solar zenith angle (o) 

P Ambient particulate matter 

concentration (g/m³) 

PM₂ .₅ , 

PM₁ ₀  

Particulate matter concentrations 

(μg/m³) 

Pmax Maximum power output (W) 

PMf Total PM loading  

rP  Reference power (W) 

   ρ Fluid density (kg/m3) 

rs Soiling ratio (%) 

t Time step (s) 

τij  Reynolds stress tensor (N,m2) 

rT  Reference temperature (oC) 

 iu  
Time-averaged velocity (m/s) 

'  iu  Fluctuating velocity components 

(m/s) 

v  Velocity (m/s), 

ν Kinematic viscosity (m2/s) 

Vd Deposition velocity (m/s) 
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